Multiplying and Dividing Fractions

1. The rule for multiplying is: top x top and bottom x bottom. You don't need a common denominator!!!!!
(a) $\frac{1}{3} \times \frac{2}{5}$
(b) $\frac{2}{3} \times \frac{3}{5}$
(c) $\frac{3}{5} \times \frac{1}{6}$
(d) $\frac{4}{7} \times \frac{3}{2}$
2. This can be extended to three fractions.
(a) $\frac{4}{5} \times \frac{2}{3} \times \frac{3}{4}$
(b) $\frac{3}{5} \times \frac{1}{3} \times \frac{5}{8}$
(c) $\frac{4}{7} \times \frac{1}{8} \times \frac{2}{3}$
(d) $\frac{2}{97} \times \frac{97}{99} \times \frac{99}{100}$
3. Mixed fractions must be converted to top-heavy (improper) fractions first....
(a) $1 \frac{2}{3} \times 1 \frac{3}{4}$
(b) $2 \frac{1}{5} \times 1 \frac{1}{3}$
(c) $3 \frac{1}{2} \times 2 \frac{2}{3}$
(d) $4 \frac{1}{3} \times 1 \frac{2}{7}$
(e) $3 \frac{3}{4} \times 2$
(f) $2 \frac{2}{3} \times 4$
(g) $2 \frac{5}{8} \times \frac{3}{4}$
(h) $3 \frac{4}{5} \times 4 \frac{4}{9}$
4. Calculate the area of the rectangle shown here.

$$
\frac{3}{4} m
$$

5. A meter length or iron weighs $3 \frac{1}{2} \mathrm{~kg}$. What would the weight of $2 \frac{1}{4} \mathrm{~m}$ be?
6. A small pick'n'mix container holds $\frac{3}{5} \mathrm{~kg}$ of sweets. The large container holds $2 \frac{1}{3}$ times as much. What weight of sweets can the large container hold?

7. To divide fractions, flip the second and change to multiply!
(a) $\frac{2}{3} \div \frac{1}{5}$
(b) $\frac{3}{4} \div \frac{4}{7}$
(c) $\frac{3}{7} \div \frac{2}{5}$
(d) $\frac{4}{9} \div \frac{2}{3}$
(e) $\frac{3}{4} \div \frac{1}{7}$
(f) $\frac{4}{5} \div \frac{3}{8}$
(g) $3 \div \frac{2}{3}$
(h) $\frac{1}{9} \div 4$
8. Now try these mixed fractions....
(a) $2 \frac{2}{3} \div 1 \frac{1}{4}$
(b) $3 \frac{1}{5} \div 2 \frac{1}{7}$
(c) $1 \frac{1}{6} \div 2 \frac{2}{3}$
(d) $3 \frac{1}{3} \div 2 \frac{2}{9}$
(e) $3 \frac{3}{4} \div 2$
(f) $3 \frac{1}{5} \div 2 \frac{3}{4}$
(g) $2 \frac{5}{8} \div \frac{3}{4}$
(h) $5 \frac{1}{3} \div 2 \frac{5}{9}$
9. David must split $1 \frac{3}{7} \mathrm{~kg}$ of sweets equally into 8 bags.

What weight of sweets would go in each bag?
10. The area of the rectangle show is $20 \frac{3}{7} \mathrm{~cm}^{2}$.

What is the breadth of the rectangle?

11. Simplify.
(a) $\frac{x}{5} \times \frac{2}{3}$
(b) $\frac{x}{y} \times \frac{2}{y}$
(c) $\frac{3}{a} \times \frac{2}{b} \times \frac{1}{c}$
(d) $\frac{3}{a} \div \frac{6}{b}$
(e) $\frac{4}{y} \div \frac{2 x}{y}$

