

National Qualifications 2023

2023 Mathematics

Higher - Paper 1

Finalised Marking Instructions

 $\ensuremath{\mathbb{C}}$ Scottish Qualifications Authority 2023

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

General marking principles for Higher Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
- (h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

You must choose whichever method benefits the candidate, **not** a combination of both.

(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$	$\frac{43}{1}$ must be simplified to 43
$\frac{15}{0.3}$ must be simplified to 50	$\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8*	

*The square root of perfect squares up to and including 144 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example $(x^3 + 2x^2 + 3x + 2)(2x + 1)$ written as

 $(x^3+2x^2+3x+2) \times 2x+1$

 $= 2x^4 + 5x^3 + 8x^2 + 7x + 2$ gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.

- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Marking instructions for each question

Candidate C :

 $\frac{5}{3}x^{\frac{2}{3}} + 40x^{-5} + c$

Question		on	Generic scheme	Illustrative scheme	Max mark
1.			 ¹ express second term in differentiable form 	• ¹ 10 x^{-4} stated or implied by • ³	3
			• ² differentiate one term	• ² $\frac{5}{3}x^{\frac{2}{3}}$ or+40x ⁻⁵	
			• ³ complete differentiation	$\bullet^3 \ \frac{5}{3}x^{\frac{2}{3}} + 40x^{-5}$	
Note	es:				
1.	Wher	e can	didates "differentiate over two line	es" see Candidates A and B.	
Z. 3	•° 15 (Wher	oniy a Te can	vailable for differentiating a term	with a negative index. about only \bullet^1 is available	
5.	when	e cun		ghout, only on buvuluste.	
Com	nmon	ly Obs	served Responses:		
Can	didat	e A -	differentiating over two lines 0	Candidate B - differentiating over two	lines
$y = x^{\frac{5}{3}} - \frac{10}{x^4}$				$y = x^{\frac{5}{3}} - \frac{10}{x^4}$	
$\chi = \frac{5}{3}x^{\frac{2}{3}} - 10x^{-4} \qquad \qquad \bullet^1 \checkmark$		⁴ ● ¹ ✓	$y = \frac{5}{3}x^{\frac{2}{3}} - 10x^{-4} \qquad \bullet^{1} \checkmark$		
x ≂	$\frac{5}{3}x^{\frac{2}{3}}$	+ 40 <i>x</i> ⁻	5 • ² ✓ • ³ ≭	$y = \frac{5}{3}x^{\frac{2}{3}} + 40x^{-3}$	´● ³ ≭

•³ 🗴

Question		on	Generic scheme	Illustrative scheme	
2.			• ¹ find midpoint of PQ	• ¹ (4,3)	4
			• ² calculate gradient of PQ	• ² $-\frac{1}{2}$ or $-\frac{6}{12}$	
	• ³ state perpendicular gradient		• ³ state perpendicular gradient	\bullet^3 2 stated or implied by \bullet^4	
			 ⁴ determine equation of perpendicular bisector 	• ⁴ $y = 2x - 5$	
Not	es:				
1.	• ⁴ is c	only a	vailable as a consequence of using a	perpendicular gradient and a midpoin	it.
2.	The g	radie	nt of the perpendicular bisector musi	t appear in fully simplified form at \bullet^3	or ●⁴
2	stage	TOP •	to be awarded.		
3.	3. At •, accept $2x - y = 5$, $y - 2x = 1$		pt $2x - y = 5$, $y - 2x = -5$ or any	other rearrangement of the equation	
	where	e the	constant terms have been simplified.		
Com			arriad Deepenance		
Con	וחסחו	y Ubs	servea kesponses:		

Qı	uestic	on	Generic scheme		Illustrative scheme	Max mark
3.			Method 1		Method 1	3
			• ¹ apply $\log_5 x - \log_5 y = \log_5 \frac{x}{y}$		• $\log_5 \frac{x}{3}$	
			• ² write in exponential form		$\bullet^2 \frac{x}{3} = 5^2$	
			• ³ process for x		• ³ 75	
			Method 2		Method 2	3
			•1 apply $\log_5 x - \log_5 y = \log_5 \frac{x}{y}$		• ¹ $\log_5 \frac{x}{3}$	
			• ² apply $m \log_5 x = \log_5 x^m$		$\bullet^2 \ldots = \log_5 5^2$	
			• ³ process for x		• ³ 75	
Note	es:					
1. E s 2. V	Each l iee Ca Where	ine o andida e cano	f working must be equivalent to that ates A and B for exceptions. didates do not use exponentials at	he li t•²,	 •³ is not available - see Candidate C 	vever
Com	monl	y Obs	served Responses:			
Cano	didate	e A -	incorrect exponential	Can	didate B	
log	$\frac{x}{3} =$	2	●1 ✓	log	5x = 2 • • ×	
$\frac{x}{3} =$	= 2 ⁵		• ² ×	3 <i>x</i>	$=5^2$ \bullet^2	
$x = 96 \qquad \qquad \bullet^3 \checkmark_1$		<i>x</i> =	$\frac{25}{3}$ $\bullet^3 \checkmark_1$			
Candidate C - no use of exponentials						
log ₅	$\frac{x}{3} = 2$	2	•1 🗸			
$\frac{x}{3} =$	10		• ² ×			
<i>x</i> = 3	80		• ³ x			

Q	uesti	on	Generic scheme	Illustrative scheme	Max mark			
4.	(a)		• ¹ find $\cos p$	• $\frac{3}{5}$	1			
			• ² find $\cos q$	$\bullet^2 \frac{3}{\sqrt{45}} \left(= \frac{1}{\sqrt{5}} \right)$	1			
Note	es:							
1. 4	Accep	$t \frac{3}{3\sqrt{2}}$	= for ∙ ^{2.} 5					
Com	monl	y Obs	served Responses:					
	(b)		• ³ select appropriate formula and express in terms of p and q	• ³ cos p cos q – sin p sin q	3			
			• ⁴ substitute into addition formula	• $\frac{3}{5} \times \frac{3}{\sqrt{45}} - \frac{4}{5} \times \frac{6}{\sqrt{45}}$				
			• ⁵ evaluate $\cos(p+q)$	$\bullet^5 -\frac{3}{\sqrt{45}} \left(= -\frac{1}{\sqrt{5}} \right)$				
Note	es:							
2. A	Award Jinava	∣•³ fo ilable	r candidates who write $\cos\left(\frac{3}{5}\right) \times \cos\left(\frac{3}{5}\right)$	$\left(\frac{3}{\sqrt{45}}\right) - \sin\left(\frac{4}{5}\right) \times \sin\left(\frac{6}{\sqrt{45}}\right)$. • ⁴ and	● ⁵ are			
3. F	For an	y atte	empt to use $\cos(p+q) = \cos p \pm \cos q$	q , $ullet^4$ and $ullet^5$ are unavailable.				
4. •	4. • ⁵ is only available if either the surd part or the non-surd part of the fraction is simplified as far as possible. Accept $-\frac{3}{\sqrt{45}}$, $-\frac{\sqrt{45}}{15}$, $-\frac{15}{15\sqrt{5}}$ or answers obtained on follow through							
V	which do not require simplification. Do not accept $-\frac{15}{5\sqrt{45}}$.							
5. •	⁵ is o	nly av	ailable for an answer expressed as a	single fraction.				
Com	monl	y Obs	served Responses:					
	_	_						

Question		on	Generic schen	ne	Illustrative scheme		
5.			• ¹ use the discriminant		• ¹ $(3p-2)^2 - 4 \times 2 \times p$		3
			• ² apply condition and e standard quadratic fo	express in orm	h • $^{2} 9p^{2} - 20p + 4 = 0$		
			• ³ process for p		• $\frac{2}{9}, 2$		
Note	es:						
1. \ 2. \	Where availa Where	e cano ble fo e x ap	didates states an incorrector finding the roots of the pears in any expression,	ct condition, e quadratic - no further m	● ² is not available. However, ● ³ see Candidate B. arks are available.	is	
Com	monl	y Ob	served Responses:				
Can	didate	e A		Car	didate B		
(For	equa	l root	s) $b^2 - 4ac = 0$	(Fo	r equal roots) $b^2 - 4ac > 0$	• ² 🗴	
$(3p-2)^2 - 4 \times 2 \times p$ • ¹ \checkmark			$2 \times p$ • ¹	(3)	$(p-2)^2 - 4 \times 2 \times p$	• ¹ 🗸	
$9p^2-20p+4$ $\bullet^2\checkmark$					-20 p + 4 = 0		
$p = \frac{2}{9}, 2$			•3	<i>p</i> =	$=\frac{2}{9}, 2$	● ³ <mark>✓ 1</mark>	

Qı	uestio	on	Generic scheme	Illustrative scheme	Max mark
6.			• ¹ express second term in integrable form	• $1 \dots - 6x^{\frac{1}{2}}$	4
			• ² integrate one term	• ² $\frac{2}{6}x^6$ or $-\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$	
			• ³ integrate other term	• ³ $-\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$ or $\frac{2}{6}x^{6}$	
			• ⁴ complete integration	• $\frac{1}{3}x^6 - 4x^{\frac{3}{2}} + c$	
Note	es:				
1. 7	he m	ark f	or integrating the final term is on	ly available if candidates integrate a ter	n with
2. [3. [4.]	o fraction o not o not	tiona t pena t pena efficio	l index. alise the appearance of an integra alise the omission of '+c' at \bullet^2 or ents must be simplified at \bullet^4 stage	al sign and/or dx throughout. • ³ . • ⁴ to be awarded.	
5. A 6. •	Accep 2, ● ³ ;	t $\frac{x^{\circ}}{\cdots}$	$\frac{-12x^{2}}{3} + c$ for • ⁴ but do not acception are not available within an inval	$\frac{2x^2 - 24x^2}{6} + c.$ id strategy.	
Com	monl	y Ob:	served Responses:		
Cano	didate	e A	×.	Candidate B - integrating over two line	25
	$2x^{5}$ –	$-6x^{\frac{1}{2}}$	$\int dx \bullet^1 \checkmark$	$\frac{2x^6}{6} - 6x^{\frac{1}{2}}$ • ¹	
$=\frac{2x}{6}$	$\frac{x^{6}}{5} - \frac{6}{5}$	$\frac{3}{2}$ + $\frac{3}{2}$ +	$C \qquad \bullet^2 \checkmark \bullet^3 \checkmark$	$=\frac{2x^{6}}{6}-\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}+c$ • ² • • ³ ×	
$=\frac{2}{6}$	$\frac{x^6}{5}$ - 2	$4x^{\frac{3}{2}}$ +	- C	$=\frac{1}{3}x^{6}-4x^{\frac{3}{2}}+c$ • ⁴ \checkmark_{1}	
$=\frac{1}{3}$	$x^6 -$	$4\sqrt{x}$	$+c \qquad \bullet^4 \mathbf{x}$		
 ⁴ cannot be awarded over two lines of working 		warded over two lines of			
Candidate C - insufficient evidence		insufficient evidence	Candidate D		
	-	<u>1</u>		÷ • ¹ ✓	
$\int 2x$	5^{-6x}	$c^2 dx$	• ¹ ✓	$=\frac{1}{3}x^6 - 4x^{\frac{3}{2}} \qquad \qquad \bullet^2 \checkmark \bullet^3 \checkmark$	
$\frac{1}{3}x^{\circ}$	$-9x^{2}$	+ C	$\bullet^2 \checkmark \bullet^3 \land \bullet^4 \mathbf{x}$	$=\frac{1}{3}x^6 - 4\sqrt{x^3} + c \qquad \qquad \bullet^4 \checkmark$	

Question		on	Generic scheme	Illustrative scheme				
7.	(a)		• ¹ use laws of logs	• $\log_2 \frac{5}{40}$	2			
			• ² evaluate log	• ² -3				
Note	es:							
1. [2. (Do not penalise the omission of the base of the logarithm at •¹. Correct answer with no working, award 0/2. 							
Com	nmonl	y Obs	served Responses:					
Can	didate	e A -	introducing a variable					
log ₂	$\left(5\times\frac{1}{2}\right)$	$\left(\frac{1}{40}\right)$	● ¹ ✓					
log	$\frac{1}{2}$ $\frac{1}{8}$							
2 ^x =	$=\frac{1}{8}$							
<i>x</i> =	-3		• ² ✓					
	(b)		• ³ state range	• 3 0 < a < 1	1			
Note	es:							
3. /	3. At • ³ accept " $a > 0$ and $a < 1$ " or " $a > 0$, $a < 1$ ".							
Com	monl	y Obs	served Responses:					

Question		Generic scheme	Illustrative scheme	Max mark			
8.		• ¹ start to differentiate • ¹ $3x^2 \dots$ or $\dots + 6x \dots$ or $\dots -9$					
		• ² complete differentiation and equate to 0	• ² $3x^2 + 6x - 9 = 0$				
		• ³ solve for x	• ³ • ⁴ • ³ -3 and 1				
		• ⁴ process for y	• ⁴ 32 and 0				
		• ⁵ construct nature table(s)	• ⁵ • ⁵ • ⁶ $x \ \dots \ -3 \ \dots \ 1 \ \dots$ f'(x) + 0 - 0 + shape / / / / / / / / / / /				
		• ⁶ interpret and state conclusion	• ⁶ max at $(-3, 32)$; min at $(1, 0)$				
Note	s:	-	· · ·				
1. For 2. • ² 3. C 3. C 4. • ³ 6. • ⁵ 7. • ⁵ 8. • ⁶ 9. C 10. A	 Notes: 1. For a numerical approach award 0/6. 2. •² is only available if ' = 0 ' appears at the •² stage or in working leading to •³, however see Candidates A and B. 3. Candidates who equate their derivative to 0, may use division by 3 as a strategy - see candidates B, C and D. 4. •³ is available to candidates who factorise their derivative from •² as long as it is of equivalent difficulty. 5. •³ and •⁴ may be awarded vertically. 6. •⁵ is not available where any errors are made in calculating values of f'(x). 7. •⁵ and •⁶ may be awarded vertically. 8. •⁶ is still available in cases where a candidates table of signs does not lead legitimately to a maximum/minimum shape. 9. Candidates may use the second derivative - see Candidates E and F. 10. Accept "max when x = -3" and "min when x = 1" for •⁶. 						
Com	monly O	bserved Responses:					
Cand	lidate A	intervalue $f'(r) = 0$	Candidate B				
Statio		$\lim_{x \to \infty} \sup_{x \to \infty} \int (x) = 0$	Stationary points when $f(x) = 0$				
$\int f'(x)$	$x) = 3x^2 +$	$-6x-9$ $\bullet^1 \checkmark \bullet^2 \checkmark$	$f'(x) = 3x^2 + 6x - 9 \qquad \bullet^1 \checkmark \bullet^2 \checkmark$				
f'(x) = -	f'(x) = 3(x+3)(x-1) = -3, 1 • ³						
Candidate C - division by 3 $3x^2 + 6x - 9 = 0$ $\bullet^1 \checkmark \bullet^2 \checkmark$			Candidate D - derivative never equated to 0 $3x^2 + 6x - 9$ $\bullet^1 \checkmark \bullet^2 \land$				
$x^2 + x = -$	2x-3 = -3, 1	= 0 ● ³ ✓	$x^{2} + 2x - 3 = 0$ $x = -3, 1$ • ³ \checkmark_{1}				

Question		on	Generic scheme	Illustrative scheme	Max mark
9.	• ¹ graph reflected in $y = x$		• ¹ graph reflected in $y = x$	• ¹ a concave up curve above the x- axis for $x > 0$	3
			• ² vertical translation of "-1" unit following a reflection in $y = x$ identifiable from graph	 ² curve passing through (0,0) and (1,2) 	
			• ³ sketch of required function	• ³ curve approaches the line $y = -1$ from above as $x \to -\infty$	
				y = 6 5 4 3 2 (1,2) 1 (3,1) 1 (3,1) 1 (3,1) - 5 - 5 - - - - - - - - - - - - -	
Not	Eor of	2000	pt any graph of a function which is co	ncave up within the first guadrant	
2.	• ¹ is of $y = x$	nly av	ailable where the candidate has atte	mpted to reflect the given curve in the	he line
3. 4.	• ³ is or The lin	nly av $y = y$	vailable where the curve passes throu $= -1$ does not need to be shown.	gh (0,0) and (1,2).	

5. For a rotation, award 0/3 - for example see Candidate D.

Q	uesti	on	Generic scheme		I	Illust	rativ	e sch	eme	Max mark
10.	(a)		• ¹ use –5 in synthetic division o evaluation of quartic	•r •	_1 —5	1	3	-7	9 –30	2
					or (-5) ⁴ +9×(1 +3× (−5)-	(-5) - 30	³ -7×	(-5) ²]
		• ² complete division/evaluation and interpret result		•	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$]
					facto OR f(-5	r 5) = 0	$\dot{-}$	(x + +5) is	s a factor	
Note	es:	<u> </u>								
1. (iunica	ation at \bullet^2 must be consistent with	worki	ing at th rdod	nat st	age i	.e. a c	andidate'	s working
2.	Accep	t any	of the following for \bullet^2 :		iucu.					
	• • f	r(-5)	= 0 so $(x+5)$ is a factor'							
	o 'si	nce r	emainder = 0 , it is a factor'							
•	th	e '0'	from any method linked to the wo	ord 'fa	actor' b	y 'so	', 'he	ence',	\therefore , \rightarrow ,	\Rightarrow etc.
3. L	Do not do	t acce uble	ept any of the following for • ² :	'0' wit	thout c	omme	≏nt			
	x^{\prime}	x = -5	is a factor', ' is a root'	0 111		omm				
•	h th	e wor	d 'factor' only, with no link.							
Com	monl	v Obs	served Responses:							
Can	didate	e A -	grid method	Candi	idate B	- gri	d me	ethod		
		x^3	-		<i>x</i> ³			1		
x 5		$\frac{x^4}{5x^3}$	$-2x^3$ $\bullet^1 \checkmark$	<i>x</i> 5	x^4 5 x^3	3	$-2x^3$			• ¹ 🗸
x 5		$\frac{x^3}{x^4}$ 5x ³	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x 5 $\therefore (x+$	$\frac{x^3}{5x^4}$	$-\frac{-}{3}$ $-\frac{-}{2x^2}$ +	$\frac{-2x^2}{-2x^3}$ $\frac{-10x}{-3x}$	+3x $+3x$ $+3x$ $+15$ $-6) = x$	$ \begin{array}{r} -6 \\ \frac{2}{-6x} \\ x -30 \\ \frac{4}{+3x^3 - 7} \end{array} $	$x^{2} + 9x - 30$
$\therefore (x$	+5)	is a fa	actor ● ² ✓	$\therefore(x+$	+5) is a	ı fact	or	,		• ² ✓

Question		'n	Generic scheme	Illustrative scheme	Max mark
10.	(b)		 ³ identify cubic and attempt to factorise ⁴ find second factor 	• ³ eg 1 1 -2 3 -6 1 -1 1 -1 or 2 1 -2 3 -6 2 0 1 0 • ⁴ 2 1 -2 3 -6 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	5
			• ⁵ identify quadratic	• $x^2 + 3$	
			• ⁶ interpret lack of solutions of quadratic	• $b^2 - 4ac = -12 < 0$ \therefore no (further real) solutions OR $x^2 = -3$ or $x^2 = -3$ \therefore no (further real) solutions	
			• ⁷ state solutions	• ⁷ $x = -5, x = 2$	

- 4. Candidates who arrive at $(x+5)(x-2)(x^2+3)$ by using algebraic long division or by inspection gain \bullet^3 , \bullet^4 and \bullet^5 .
- 5. Evidence for \bullet^6 may appear in the quadratic formula.
- 6. At •⁶ accept interpretations such as "no further roots", "no solutions" and "cannot factorise further" with justification.
- 7. At •⁶ accept $x = \sqrt{-3}$ leading to "not possible" and "not real".
- 8. Where there is no reference to $b^2 4ac$ accept '-12<0 so no real roots' with the remaining roots stated for \bullet^6 see candidates E and F.
- 9. Do not accept any of the following for \bullet^6 :
 - $(x+5)(x-2)(x^2+3)$ no further roots/cannot factorise further.
 - $(x+5)(x-2)(\dots \dots)(\dots \dots)$ no further roots/cannot factorise further.
- 10. Where the quadratic factor obtained at \bullet^5 can be factorised, \bullet^6 and \bullet^7 are not available. 11. \bullet^7 is only available where \bullet^6 has been awarded.

Question	Gene	ric scheme		Illustrative scheme		Max mark
10.(continued)					
Commonly Obs	served Response	25:	r			
Candidate C			Car	ndidate D		
(x+5)(x-2)(x^2+3)	• ⁵ ✓	(<i>x</i> -	$(x-2)(x^2+3)$	● ⁵ ✓	
$b^2 - 4ac = 0 -$	-12 < 0	•6 🗸	b^2	-4 <i>ac</i> < 0	• ⁶ ^	
so no solutions $x = -5$, $x = 2$		•7 🗸	so r $x =$	x = -5, $x = 2$	•7 🖌	2
Candidate E			Car	ndidate F		
(x+5)(x-2)($x^2 + 3$	• ⁵ 🗸	(<i>x</i> -	$(x-2)(x^2+3)$	●5 🗸	
-12 < 0		•6 🗸	-1	2<0	6 🔥	7
x = -5, x = 2		•7 🗸	so r	10 SOLUTIONS	•• •	• •
Candidate G - (a) (a) $x = \frac{x^3}{x}$ $5 = 5x^3$ (b) (b) x^2 $x = \frac{x^3}{x}$ (b) x^3 is awarded for expression (wh (a)) AND the t summing to the cubic respective of the cubic respecti	grid method $\begin{array}{c c} -2x^2 & 3x \\ \hline -2x^3 & +3x^2 \\ \hline -10x & +15x \\ \hline \hline \end{array}$ or evidence of the diagenerity o	-6 $-6x$ -30 he cubic e grid from part onal boxes rd terms in the				
$\begin{array}{c c} x & x^{2} \\ x & x^{3} \\ -2 & -2x^{2} \\ (x+5)(x-2)(x-2)(x-2)(x-2)(x-2)(x-2)(x-2)(x-2$	$\begin{array}{c cc} 0x & 3 \\ \hline 0 & 3x \\ \hline 0 & -6 \\ \end{array}$ $x^2 + 3$	• ⁴ ✓				
$b^2 - 4ac = -1$ $\therefore \text{ no more sol}$ x = -5, x = 2) 12 < 0 utions	● ⁶ ✓				

Question		on	Generic scheme	Illustrative scheme	Max mark
11.	(a)		• ¹ integrate	\bullet^1 $-5\cos x - 3\sin x$	3
			• ² substitute limits	• ² $\left[-5\cos\pi - 3\sin\pi\right]$ $-\left[-5\cos\frac{\pi}{2} - 3\sin\frac{\pi}{2}\right]$	
			• ³ evaluate integral	• ³ 8	

1. Where candidates make no attempt to integrate or use another invalid approach award 0/3 - see Candidate A. However see also Candidates B to F.

- 2. Do not penalise the inclusion of '+c' or the continued appearance of the integral sign.
- 3. Candidates who change the limits to degrees before integrating cannot gain \bullet^1 . However, \bullet^2 and \bullet^3 are still available.
- 4. •³ is only available where candidates have considered both limits within a trigonometric function.
- 5. The minimum acceptable response for \bullet^2 is 5-(-3).

Commonly Observed Responses:

Question		on	Generic scheme	Illustrative scheme	Max mark				
11.	(b)		• ⁴ identify boundaries and shade area	•4 •4 $y = 3 \cos x$ $y = 3 \cos x$ $y = 5 \sin x$	1				
Note	es:								
Com	nmonl	y Obs	served Responses:						

12. Method 1 • i identify common factor • i identify common factor • i	Q	uestic	on	Generic sc	:heme		Illus	trative scheme	۸ m	∕lax nark
Image: set of the square set of th	12.			Method • ¹ identify common	1 1 factor		• $-2(x^2 + implied b)$	Method 1 - $6x$ stated or $y \bullet^2$		3
Image: second				• ² complete the squ	lare		$\bullet^2 -2(x+3)$	$(2)^2 \dots$		
Method 2 • ¹ expand completed square formMethod 2 • ¹ expand completed square formMethod 2 • ¹ $ax^2 + 2abx + ab^2 + c$ stated or implied by • ² • ² $a = -2, 2ab = -12,$ and $ab^2 + c = 7$ • ³ process for b and c and write in required form• ² $a = -2, 2ab = -12,$ and $ab^2 + c = 7$ • ³ $-2(x+3)^2 + 25$ Notes:1. $-2(x+3)^2 + 25$ with no working gains • ¹ and • ² only. However, see Candidate E.2. • ¹ and • ³ are not available in cases where $a > 0$. For example, see Candidate F.Commonly Observed Responses:Candidate A $-2(x^2+6)+7$ $-2(x+3)^2 + 25$ Othes:Candidate A $-2(x+3)^2 + 25$ OutputCandidate C $-2(x+4)^2 + 25$ Candidate C $-2(x+6)^2 - 36) + 7$ $-2(x+6)^2 + 79$ Candidate E $-2(x+3)^2 + 25$ Candidate E $-2(x+3)^2 + 25$ Candidate E $-2(x+3)^2 + 25$ $-2(x+6)^2 + 79$ Candidate E $-2(x+6)^2 + 79$ $-2(x+6)^2 + 79$ Candidate E $-2x^2 - 12x + 7$ $= -2x^2 - 12x + 7$ $-2(x+3)^2$ Candidate F $-2x^2 - 12x + 7$ $-2(x+3)^2$ Candidate F $-2x^2 - 12x + 7$ $-2(x+3)^2$ Candidate F $-2x^2 - 12x + 7$ $-2(x+3)^2$				• ³ process for <i>c</i> and required form	write in		• ³ $-2(x+3)$) ² + 25		
Image: Second state in the second state is the second state in the second state is the second				Method •1 expand complete	d 2 d square for	m	• $ax^2 + 2a$ or implied	Method 2 $abx + ab^2 + c$ stat d by \bullet^2	ed	
Notes:1. $-2(x+3)^2 + 25$ with no working gains \bullet^1 and \bullet^2 only. However, see Candidate E.2. \bullet^1 and \bullet^3 are not available in cases where $a > 0$. For example, see Candidate F.Commonly Observed Responses:Candidate A $-2(x^2+6)+7$ $-2((x+3)^2-9)+7$ Candidate A $-2(x+3)^2+25$ Candidate B $ax^2+2abx+ab^2+c$ $\bullet^1 \checkmark \bullet^2 \checkmark$ Candidate A $-2(x+3)^2+25$ Candidate B $ax^2+2abx+ab^2+c$ $\bullet^1 \checkmark \bullet^2 \checkmark$ Candidate B $ax^2+2abx+ab^2+c$ $\bullet^1 \checkmark \bullet^2 \checkmark$ $-2(x+3)^2+25$ $\bullet^1 \checkmark \bullet^2 \checkmark$ Candidate C $-2(x^2+12x)+7$ $-2(x+6)^2-36)+7$ $\bullet^1 \checkmark \bullet^2 \checkmark$ $-2(x+6)^2+79$ $\bullet^1 \checkmark \bullet^2 \checkmark$ Candidate C $-2(x+6)^2+79$ $-2(x+6)^2+79$ $\bullet^1 \checkmark \bullet^2 \checkmark$ $-2(x+6)^2+79$ $\bullet^1 \checkmark \bullet^2 \checkmark$ Candidate F $-2(x+6)^2+79$ $-2(x+6)^2+79$ $\bullet^1 \checkmark \bullet^2 \checkmark$				• ² equate coefficier	nts		• ² $a = -2, 1$ and ab^2	2ab = -12, + $c = 7$		
Notes: 1. $-2(x+3)^2 + 25$ with no working gains • ¹ and • ² only. However, see Candidate E. 2. • ¹ and • ³ are not available in cases where $a > 0$. For example, see Candidate F. Commonly Observed Responses: Candidate A $-2(x^2+6)+7$ $-2((x+3)^2-9)+7$ • ¹ • • ² • $-2(x+3)^2+25$ • ³ • See the exception to marking principle (h) Candidate C $-2(x^2+12x)+7$ • ¹ * $-2((x+6)^2-36)+7$ • ² • $-2(x+6)^2+79$ • ³ • Candidate E $-2(x+3)^2+25$ • ¹ • • ² • $-2(x+6)^2+79$ • ³ • Candidate E $-2(x+3)^2+25$ • ¹ • • ² • $-2(x+6)^2+79$ • ³ • Candidate E $-2(x+3)^2+25$ • ¹ • • ² • $-2(x+6)^2+79$ • ³ • Candidate E $-2(x^2+6x+9)+25$ $=-2x^2-12x+7$ $=2(x+3)^2$ · $-2(x+3)^2$ ·				• ³ process for <i>b</i> and required form	c and write	in	• ³ -2(x+3)	$)^{2} + 25$		
1. $-2(x+3)^2+25$ with no working gains \bullet^1 and \bullet^2 only. However, see Candidate E. 2. \bullet^1 and \bullet^3 are not available in cases where $a > 0$. For example, see Candidate F. Commonly Observed Responses: Candidate A $-2(x^2+6)+7$ $-2(x+3)^2-9)+7$ $\bullet^1 \checkmark \bullet^2 \checkmark$ $-2(x+3)^2+25$ $\bullet^3 \checkmark$ See the exception to marking principle (h) Candidate C $-2(x^2+12x)+7$ $\bullet^1 \bigstar$ $-2((x+6)^2-36)+7$ $\bullet^1 \checkmark$ $\bullet^2 \checkmark$ $-2(x+6)^2+79$ $\bullet^3 \checkmark$ Candidate E $-2(x+3)^2+25$ $\bullet^1 \checkmark \bullet^2 \checkmark$ $-2(x+6)^2+79$ $\bullet^3 \checkmark$ Candidate E $-2(x+3)^2+25$ $\bullet^1 \checkmark \bullet^2 \checkmark$ Candidate E $-2(x+3)^2+25$ $\bullet^1 \checkmark \bullet^2 \checkmark$ Candidate E $-2(x^2+6x+9)+25$ $=-2x^2-12x-18+25$ $=-2x^2-12x+7$ $\bullet^3 \checkmark$ $=2(x+3)^2$ $=2(x+3)^2$ $=-2(x+3)^2$ =-2	Note	es:								
2. • • ¹ and • ³ are not available in cases where $a > 0$. For example, see Candidate F. Commonly Observed Responses: Candidate A $-2(x^2+6)+7$ $-2((x+3)^2-9)+7$ • ¹ \checkmark • ² \checkmark $ax^2+2abx+ab^2+c$ • ¹ \checkmark $a=-2, 2ab=-12, ab^2+c=7$ • ² \checkmark $b=3, c=25$ • ³ \land See the exception to marking principle (h) Candidate C $-2(x^2+12x)+7$ • ¹ \times $-2((x+6)^2-36)+7$ • ¹ \times • ² \checkmark $-2(x+6)^2+79$ • ³ \checkmark Candidate E $-2(x+3)^2+25$ • ¹ \checkmark • ² \checkmark Candidate E $-2(x+3)^2+25$ • ¹ \checkmark • ² \checkmark Candidate E $-2(x+3)^2+25$ • ¹ \checkmark • ² \checkmark $-2(x+6)^2+79$ • ³ \checkmark Candidate F $-2x^2-12x-18+25$ $=-2x^2-12x+7$ • ¹ \times $=2(x+3)^2$ $=2(x+3)^2$ $=-2(x+3)^2$ • ² \checkmark $=-2(x+3)^2$	1.	-2(x +	+3) ² +	25 with no working	gains \bullet^1 and	• ² or	nly. However	see Candidate E.		
Commonly Observed Responses: Candidate A $-2(x^2+6)+7$ $a^{2}(x^2+6)+7$ $-2((x+3)^{2}-9)+7$ $a^{1} \checkmark a^{2} \checkmark$ $-2((x+3)^{2}+25)$ $a^{3} \checkmark$ See the exception to marking principle (h) $a = -2, 2ab = -12, ab^{2} + c = 7$ Candidate C $a = -2, 2ab = -12, ab^{2} + c = 7$ $-2(x+3)^{2}+25$ $a^{3} \checkmark$ Candidate C $a^{3} \checkmark$ $-2(x^{2}+12x)+7$ $a^{1} \bigstar$ $-2(x^{2}+12x)+7$ $a^{1} \bigstar$ $-2(x+6)^{2}-36)+7$ $a^{2} \checkmark$ $-2(x+6)^{2}+79$ $a^{3} \checkmark$ $-2(x+6)^{2}+79$ $a^{3} \checkmark$ $-2(x+6)^{2}+79$ $a^{3} \checkmark$ Candidate E $-2(x+6)^{2}+79$ $a^{3} \checkmark$ $-2(x+3)^{2}+25$ $a^{1} \checkmark a^{2} \checkmark$ $-2(x+6)^{2}+79$ $a^{3} \checkmark$ Candidate E $-2(x^{2}-12x+7)$ $-2x^{2}-12x+7$ $a^{2} \checkmark$ $(2x^{2}+6x)$ $= 2(x^{2}+6x)$ $= 2(x+3)^{2}$ $a^{2} \checkmark$	2. •	¹ and	\bullet^3 are	e not available in cas	es where a	> 0	. For example	e, see Candidate F.		
Candidate A Candidate B $-2(x^2+6)+7$ $ax^2 + 2abx + ab^2 + c$ $ax^2 + 2abx + ab^2 + c = 7$ $ax^2 + 2abx + ab^2 + c $	Com	monl	y Obs	served Responses:						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cane	didate	eΑ			Can	ididate B			
$\begin{array}{c} -2\left(\left(x+3\right)^{2}-9\right)+7 & \bullet^{1}\checkmark \bullet^{2}\checkmark \\ -2\left(x+3\right)^{2}+25 & \bullet^{3}\checkmark \\ \text{See the exception to marking principle (h)} \\ \hline \textbf{Candidate C} \\ -2\left(x^{2}+12x\right)+7 & \bullet^{1}\varkappa \\ -2\left(\left(x+6\right)^{2}-36\right)+7 & \bullet^{2}\checkmark \\ -2\left(x+6\right)^{2}+79 & \bullet^{3}\checkmark \\ \hline \textbf{Candidate E} \\ -2(x+3)^{2}+25 & \bullet^{1}\checkmark \bullet^{2}\checkmark \\ -2(x+3)^{2}+25 & \bullet^{1}\checkmark \bullet^{2}\checkmark \\ \hline \textbf{Check:} = -2\left(x^{2}+6x+9\right)+25 \\ = -2x^{2}-12x-18+25 \\ = -2x^{2}-12x+7 & \bullet^{3}\checkmark \\ \hline \textbf{Candidate F} \\ -2\left(x+3\right)^{2} & \bullet^{1}\checkmark \bullet^{2}\checkmark \\ = -2\left(x+3\right)^{2} & \bullet^{1}\checkmark \bullet^{2}\checkmark \\ = 2\left(x+3\right)^{2} & \cdots \\ = 2\left(x+3\right)^{2} & \bullet^{1}\varkappa \\ = 2\left(x+3\right)^{2} & \bullet^{2}\checkmark \\ \hline \textbf{Candidate F} \\ -2x^{2}-12x+7 & \bullet^{3}\checkmark \\ = 2\left(x+3\right)^{2} & \cdots \\ = 2\left(x+3\right)^{2} & \bullet^{2}\checkmark \\ = -2\left(x+3\right)^{2} & \bullet^{3}\varkappa \\ \hline \textbf{Candidate F} \\ = -2\left(x+3\right)^{2} & \bullet^{3}\varkappa \\ \hline \textbf{Candidate F} \\ = -2\left(x+3\right)^{2} & \bullet^{3}\varkappa \\ \hline \textbf{Candidate F} \\ = -2\left(x+3\right)^{2} & \bullet^{2}\checkmark \\ \hline \textbf{Candidate F} \\ = -2\left(x+3\right)^{2} & \bullet^{2}\checkmark \\ \hline \textbf{Candidate F} \\ = -2\left(x+3\right)^{2} & \bullet^{3}\varkappa \\ \hline \textbf{Candidate F} \\ = -2\left(x+3\right)^{2} & \bullet^{3}\varkappa \\ \hline \textbf{Candidate F} \\ = -2\left(x+3\right)^{2} & \bullet^{3}\varkappa \\ \hline \textbf{Candidate F} \\ \hline \textbf{Candidate F} \\ \hline \textbf{Candidate F} \\ = -2\left(x+3\right)^{2} & \bullet^{3}\varkappa \\ \hline \textbf{Candidate F} \\ \hline Candida$	-2($x^2 + 6$)+7			ax	$^{2}+2abx+a$	$b^2 + c$	● ¹ ✓	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2(((x+3)) ² - 9)+7	• ¹ ✓ • ² ✓	a = b =	-2, 2ab = -3, c = 25	12, $ab^2 + c = 7$	• ² ✓ • ³ ∧	
Candidate C $-2(x^{2}+12x)+7$ $\bullet^{1} \times$ $-2((x+6)^{2}-36)+7$ $\bullet^{2} \checkmark_{1}$ $-2(x+6)^{2}+79$ $\bullet^{3} \checkmark_{1}$ Candidate E $-2(x+3)^{2}+25$ $\bullet^{1} \checkmark \bullet^{2} \checkmark$ Check: $=-2(x^{2}+6x+9)+25$ $=-2x^{2}-12x-18+25$ $=-2x^{2}-12x+7$ $\bullet^{3} \checkmark$ $=2(x+3)^{2}$ $\bullet^{1} \times$ $=2(x+3)^{2}$ $=-2(x+3)^{2}$ $=-2(x+3)^{2}$ $=-2(x+3)^{2}$ $=-2(x+3)^{2}$ $=-2(x+3)^{2}$ $=-2(x+3)^{2}$ $=-2(x+3)^{2}$	-2(See	(x+3)	$r^{2} + 2!$	5 ion to marking princi	● ³ ✓ ple (h)			• ³ is lost as answer completed square	is not form	in
$\begin{array}{c} \text{calculate c} \\ -2\left(x^{2}+12x\right)+7 \\ -2\left(\left(x+6\right)^{2}-36\right)+7 \\ -2\left(\left(x+6\right)^{2}-36\right)+7 \\ -2\left(x+6\right)^{2}+79 \\ \end{array} \\ \begin{array}{c} \text{-2}\left(x+6\right)^{2}+79 \\ \text{-2}\left(x+6\right)^{2}+79 \\ \end{array} \\ \begin{array}{c} \text{-2}\left(x+6\right)^{2}+79 \\ \text{-2}\left(x+6\right)^{2}+79 \\ \end{array} \\ \begin{array}{c} \text{-2}\left(x+6\right)^{2}+79 \\ \text{-3}\swarrow \\ \end{array} \\ \begin{array}{c} \text{-2}\left(x+6\right)^{2}+79 \\ \text{-3}\leftrightarrow \\ \end{array} \\ \begin{array}{c} \text{-2}\left(x+6\right)^{2}+79 \\ \text{-3}\leftarrow \\ \end{array} \\ \begin{array}{c} \text{-2}\left(x+6\right)^{2}+7$	Cane	didate	<u> </u>			Can	didate D			
$-2((x+6)^{2}-36)+7$ $-2(x+6)^{2}+79$ $-2(x+6)^{2}+79$ $-3 \checkmark 1$	-2($x^{2} + 1$	(2x)+	- 7	• ¹ ×	-2($((x+6)^2-36)$	+7	• ¹ × •	• ² ×
$-2(x+6)^{2}+79$ $\bullet^{3} \checkmark 1$ Candidate E $-2(x+3)^{2}+25$ $\bullet^{1} \checkmark \bullet^{2} \checkmark$ Check: $=-2(x^{2}+6x+9)+25$ $=-2x^{2}-12x-18+25$ $=-2x^{2}-12x+7$ $\bullet^{3} \checkmark$ Candidate F $-2x^{2}-12x+7$ $=2x^{2}+12x-7$ $\bullet^{1} \times$ $=2(x+3)^{2} \dots$ $\bullet^{2} \checkmark 1$ $=-2(x+3)^{2}$	-2(((x+6)	$)^{2} - 3$	6)+7	• ² 1	-2($(x+6)^2+79$		• ³ 🖌 1	
Candidate E $-2(x+3)^2 + 25$ $\bullet^1 \checkmark \bullet^2 \checkmark$ Check: $= -2(x^2 + 6x + 9) + 25$ $= -2x^2 - 12x - 18 + 25$ $= -2x^2 - 12x + 7$ $\bullet^3 \checkmark$ Candidate F $-2x^2 - 12x + 7$ $= 2x^2 + 12x - 7$ $\bullet^1 \bigstar$ $= 2(x^2 + 6x)$ $= 2(x+3)^2$ $\bullet^2 \checkmark 1$ $= -2(x+3)^2$	-2(x+6	² + 7	9	● ³ <mark>✓ 1</mark>					
$\begin{vmatrix} =-2x^{2}-12x-10+23 \\ =-2x^{2}-12x+7 \\ \bullet^{3}\checkmark = -2(x+3)^{2} \\ =-2(x+3)^{2} \\ \bullet^{3} \checkmark$	Cano -2(: Cheo	didate $(x+3)^2$ ck: = -	+25 $-2(x^{2})$	$\bullet^1 \checkmark \bullet^2$ $^2 + 6x + 9) + 25$ 12x + 18 + 25	*	Can -2: = 2 = 2	didate F $x^{2} - 12x + 7$ $x^{2} + 12x - 7$ $(x^{2} + 6x$		• ¹ x	
		= ·	$-2x^{-2}$	-12x - 10 + 25 -12x + 7	•3 🗸	= 2 = -	$(x+3)^2 \dots$ $(x+3)^2 \dots$		• ² ✓ 1	

Question		on	Generic scheme	Illustrative scheme	Max mark	
13.	(a)	(i)	• ¹ state exact value	•1 √3	1	
		(ii)	• ² interpret notation	• ² $f(2x)$ or $2\sin(g(x))$	2	
			• ³ state expression for $f(g(x))$	• ³ $2\sin 2x$		
Note	es:	((
1. F	For f	(g(x	$)) = 2 \sin 2x$ without working, award	both \bullet^2 and \bullet^3 .		
2. V	Norki monl	ng tor v Obs	(a)(ii) may be found in (a)(i)			
Cano (a)(i	didate i) f(g(x)	$=4\sin x$ $\bullet^2 \times \bullet^3 \checkmark_1$	Candidate B - Beware of "2 attemp $f(g(x)) = 2 \sin x$ • ² * • ³ $f(2x) = 2 \sin 2x$	sts"	
	(b)	(i)	• ⁴ find the value of $\sin p$	• $\frac{1}{6}$	1	
		(ii)	• ⁵ expand $f(g(p))$ using double angle formula	• ⁵ $2 \times 2 \sin p \cos p$ or $4 \sin p \cos p$ stated explicitly	3	
			• ⁶ find value of $\cos p$	$\bullet^6 \frac{\sqrt{35}}{6}$		
			• ⁷ substitute and determine exact value	• ⁷ $2 \times 2 \times \frac{1}{6} \times \frac{\sqrt{35}}{6}$ leading to $\frac{\sqrt{35}}{6}$		
				9		
Note	5 :	- 4		6		
1.	° 15 N	ot ava	allable for expansions which do not in $\frac{1}{1}$	ivolve p . •° and •' are still available.		
ŀ	lowe	/er, a	ccept sin $\begin{pmatrix} -\\ 6 \end{pmatrix}$ in place of p - see C	andidate C.		
2. • 3. [o ⁷ is o Do not his gu	nly av t pena uestic	vailable as a consequence of substitut alise trigonometric ratios which are lo on.	ting into a valid formula from \bullet^5 . ess than -1 or greater than 1 through	out	
Com	monl	y Obs	served Responses:			
f(g	Candidate C $f(g(p)) = 4\sin\left(\sin^{-1}\left(\frac{1}{6}\right)\right)\cos\left(\sin^{-1}\left(\frac{1}{6}\right)\right) \bullet^{5} \checkmark$					
$4 \times \frac{1}{6}$	$4 \times \frac{1}{6} \times \frac{\sqrt{35}}{6} \qquad \qquad \bullet^6 \checkmark$					
$\frac{\sqrt{35}}{9}$	5		•7 🗸			

[END OF MARKING INSTRUCTIONS]

2023 Mathematics

Higher - Paper 2

Finalised Marking Instructions

 $\ensuremath{\mathbb{C}}$ Scottish Qualifications Authority 2023

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

General marking principles for Higher Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
- (h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

You must choose whichever method benefits the candidate, **not** a combination of both.

(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

$\frac{15}{12}$ must be simplified to $\frac{5}{4}$. or $1\frac{1}{4}$	$\frac{43}{1}$ must be simplified to 43
$\frac{15}{0.3}$ must be simplified to 50	$\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8*	

*The square root of perfect squares up to and including 144 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example $(x^3 + 2x^2 + 3x + 2)(2x + 1)$ written as

 $(x^3 + 2x^2 + 3x + 2) \times 2x + 1$

 $= 2x^4 + 5x^3 + 8x^2 + 7x + 2$ gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.

- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Question		on	Generic scheme	Illustrative scheme	Max mark
1.	(a)		• ¹ find gradient of QR	• $^{1} -\frac{1}{3}$ or $-\frac{5}{15}$	3
			• ² use property of perpendicular lines	• ² 3	
			\bullet^3 determine equation of altitude	• ³ $y = 3x - 16$	
Note	s:				
 •³ is only available to candidates who find and use a perpendicular gradient. The gradient of the perpendicular bisector must appear in fully simplified form at •² or stage for •³ to be awarded - see Candidate B. •³ is not available as a consequence of using the midpoint of QR and the point P. At •³, accept any arrangement of a candidate's equation where constant terms have be 					
Com	monl	y Obs	erved Responses:		
Cand Corre m = -	idate ect ec 13–(A - quatio -2)	BEWARE on from incorrect substitution = $3 \qquad e^1 \times e^2 \wedge$	Candidate B - unsimplified gradie $m = -\frac{5}{15}$ • ¹ ✓	nt
	3-(8)		$m_{\perp} = \frac{15}{\checkmark}$	
<i>y</i> = 3	3x-1	6	• ³ x	5 15x - 5y - 80 = 0 • ³	
	(b)		• ⁴ determine gradient of the line	• $m = \frac{1}{2}$ or $\tan \theta = \frac{1}{2}$	2
			• ⁵ use $m = \tan \theta$ to find the angle	• ⁵ 26 · 6° or 0.4636 radians	
Note	s:				1
5. D	o not	pena	alise the omission of units at \bullet^5 .		
6. A	ccept	t any	answers which round to 27° or 0.46 r	adians.	
7. F	or 27	° or C	0.46 radians without working award 2	/2.	
8. W	/here	canc	lidates find the angle of the altitude	or other sides with the positive dire	ction of
Com	ne x-a		nly • is available.		
Com	nom:				
Cand	idate 4	9 C - I	no reference to tan	1	
$m = -\frac{1}{8}$	<u>+</u> 8		•4 🗸	$m = \frac{1}{2}$ • ⁴ ✓	
26.6°	þ		●5 ✓	$\theta = \tan \frac{1}{2}$ • ⁵ x	
				$\theta = 26.6^{\circ}$	
				Stating tan rather than tan ⁻¹ See general marking principle (g)	
Cand	idate	ε			
tan ⁻¹	(3)=	= 72 °	• ⁴ ¥ • ⁵ 🖌 1		

Question		Generic scheme		Illustrative scheme	Max mark
2.		• ¹ calculate <i>y</i> -coordinate		• ¹ -1	4
		• ² differentiate		• ² $10x^4 - 3$	
		\bullet^3 calculate the gradient		• ³ 7	
		• ⁴ find equation of line		$\bullet^4 y = 7x - 8$	
Notes:					
 Only •⁴ is a derivation The a 	 is avoinly avoint ative. ppearoint 	ailable to candidates who integra ailable where candidates attempt ance of $10x^4 - 3$ gains \bullet^2 .	te. t to	find the gradient by substituting into	o their
4. • 15 1	3 may	be awarded - see Candidates B (ເ/ 1: ເ ີ		aigin
5. \bullet^4 is r	ot ava	ilable as a consequence of using a	a pe	erpendicular gradient.	
Commo	nly Obs	served Responses:			
Candida	te A		Ca	ndidate B - incorrect notation	
$\frac{dy}{dt} = 10$	$x^{4} - 3$	• ² ✓	<i>y</i> =	= −1 • ¹ ✓ - BoD)
dx		1	<i>y</i> =	$=10x^4 - 3$ • ²	
y = 7		•' ×	<i>y</i> =	- − − ¹ • ³ ✓ - BoD	l.
m = -3 $y = -3x$	+10	• ⁴ <mark>⁄</mark> 2	y - y =	+1 = 7(x-1) = 7x-8 •4 ✓	
Candida	te C -	use of values in equation $a^1 < BoD$	Ca	ndidate D - incorrect notation	
y = -1			y-		'
$\frac{dy}{dx} = 10x$	c ⁴ – 3	• ² ✓	$\frac{dy}{dx}$	$=10x^4-3$ $\bullet^2 \checkmark$	
$\frac{dy}{dx} = 7$		• ³ ✓	<i>y</i> =	=7 • ³ ×	
$\frac{dx}{y=7}$	(1)	i		Evidence for • ³ would need to app in the equation of the line	ear
y + 1 = 7 $y = 7x - 7$	(x-1) 8	•4 🗸			
Candida $y = -1$	te E	• ¹ 🗸			
$\frac{dy}{dx} = 10x$	$x^4 - 3 =$	• ² ✓			
$10(1)^4$ –	3 = 0	• ³ ×			
m = 7 $y = 7x - 7$	8	• ⁴ <mark>⁄</mark> 1			

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
3.			• ¹ start to integrate	• ¹ $7\sin\left(4x+\frac{\pi}{3}\right)\dots$	2
			• ² complete integration	• ² × $\frac{1}{4}+c$	
Note	es:				
1. 4	ward	l ● ¹ fo	r any appearance of $(+)7\sin\left(4x-1\right)$	$\left(+\frac{\pi}{3}\right)$ regardless of any constant multipl	ier.
2. (s	Candio see Ca	dates andida	who work in degrees from the sta ate C.	rt cannot gain \bullet^1 , however \bullet^2 is still ava	ailable -
3. \	Vhere	e cano	lidates use any other invalid appro	pach, eg $7\sin\left(4x+\frac{\pi}{3}\right)$,	
	$\int \left(7 \right)$	cos 4 <i>;</i>	$(x + \cos\frac{\pi}{3}) dx$ or $7\sin 4x + \frac{\pi}{3}$ awa	ard 0/2. However, see Candidate E.	
4. [Do not	t pena	alise the appearance of an integra	l sign and/or dx throughout.	
Com	monl	y Obs	served Responses:		
Cane	didate	e A -	using addition formula	Candidate B	
$\int \left(\frac{1}{2} \right) dx$	cos 4	xcos	$\frac{\pi}{3} - 7\sin 4x \sin \frac{\pi}{3} dx$	$\frac{7}{4}\sin\left(4x+\frac{\pi}{3}\right)$	
$=\frac{7}{4}$	$\sin 4x$	$\cos\frac{\pi}{3}$	$\frac{7}{4} + \frac{7}{4}\cos 4x\sin \frac{\pi}{3} \dots \bullet^{1} \checkmark$	$=\frac{7}{4}\sin\left(4x+\frac{\pi}{3}\right)+c$	~
$=\frac{7}{4}$	$\sin 4x$	$\left(\frac{1}{2}\right)$	$+\frac{7}{4}\cos 4x\left(\frac{\sqrt{3}}{2}\right)+c \bullet^2 \checkmark$		
Cane	didate	e C - v	working in degrees	Candidate D - integrating over two lin	es
∫7 c	os(4)	x + 60	dx	$7\sin\left(4x+\frac{\pi}{3}\right)$ \bullet^1	 Image: A second s
= / s	sin (4 <i>x</i>	r + 60	$) \times -+c$ • $\checkmark \bullet^{2} \checkmark 1$	$=\frac{7}{4}\sin\left(4x+\frac{\pi}{3}\right)+c$	×
Cano 7	Candidate E - integrating in part $7 (\pi)$ Candidate F - insufficient evidence of integration				
$\begin{vmatrix}5\\4 \end{vmatrix}$	51n 4 .	$x + \frac{1}{3}$	$+c$ • \times • $\sqrt{1}$	$\frac{7}{4}\cos\left(4x+\frac{\pi}{3}\right)+c$	• ² x

Question		on	Generic scheme	Illustrative scheme	Max mark
4.			• ¹ reflect in the <i>y</i> -axis	 ¹ cubic graph with max at (-2, 0) and passing through (1, 0) 	2
			• ² apply appropriate vertical scaling	• ²	
Not	es:				
1.	When	re ca	ndidates do not sketch a cubic funct	ion award 0/2.	
2.	For t	ranst	formations of the form $f(-x)+k$ or	-f(x+k) award 0/2.	
3.	lf the	e tra	nsformation has not been applied to	all coordinates, award 0/2.	

O	109	:ti	^	n
Qu	ie:	SLI	υ	H

Max mark

4. (continued)

Comm	only Observe	d Responses:			
	Function	Transformation of	Transformation of	Shape	Award
		(-1,0) and (2,0)	(0,-2)	-	
	Incorrect orientation	(-2,0) and (1, 0)	(0,-4)	\bigvee	0/2
	-2f(x)	(-1,0) and (2,0)	(0,4)	\wedge	1/2
	-2f(-x)	(-2,0) and (1, 0)	(0,4)	\bigvee	1/2
	-2f(-2x)	(-1,0) and ($\frac{1}{2}$,0)	(0,4)	\smallsetminus	0/2
	$-2f\left(-\frac{x}{2}\right)$	(-4,0) and (2,0)	(0,4)	\bigvee	0/2
	2f(x)	(-1,0) and (2,0)	(0,-4)	\bigvee	1/2
	2f(2x)	$(-\frac{1}{2},0)$ and (1,0)	(0,-4)	\bigvee	1/2
	$2f\left(\frac{x}{2}\right)$	(-2,0) and (4,0)	(0,-4)	\bigvee	1/2
	$2f\left(-\frac{x}{2}\right)$	(-4,0) and (2,0)	(0,-4)	\wedge	1/2
	2f(x-1)	(0,0) and (3,0)	(1,-4)	\smallsetminus	1/2
	f(-x)	(-2,0) and (1,0)	(0,-2)	\wedge	1/2
	$\frac{1}{2}f(-x)$	(-2,0) and (1,0)	(0,-1)	\wedge	1/2
	f(2x)	$(-\frac{1}{2},0)$ and (1,0)	(0,-2)	$\backslash \land$	0/2
	f(-2x)	$(-1,0)$ and $(\frac{1}{2},0)$	(0,-2)	\sim	0/2
	$f\left(-\frac{x}{2}\right)$	(-4,0) and (2,0)	(0,-2)	\sim	0/2
	$-f\left(\frac{x}{2}\right)$	(-2,0) and (4,0)	(0,2)	\wedge	0/2
	$-f\left(-\frac{x}{2}\right)$	(-4,0) and (2,0)	(0,2)	\sim	0/2

Q	uestio	on	Ge	neric scheme		Illustrative scher	ne	Max mark
5.			• ¹ start to d	lifferentiate		• ¹ $4(3-2x)^3$		3
			• ² complete	e differentiation		• ² ×(-2)		
			• ³ calculate	rate of change		• ³ 1000		
Note	es:							
1. C	orrec	t ans	wer with no w	vorking, award 0/3.				
2. A	ccept	$4u^{\circ}$	$\times (-2)$ whe	re $u = 3 - 2x$ for •'	•			
3. W	/here	cand	idates evalua	ite $f(4)$, award 0/3	3, se	e Candidate B.		
4. ●	³ is on	ly av	ailable for ev	aluating expressions	equ	vivalent to $k(3-2x)^3$.		
Com	monl	y Obs	served Respo	onses:				
Cano	didate	e A			Cai	ndidate B - evaluating f(x)	
f'(x)	c) = 4	(3-2	$(x)^3 \times (-2)$	$\bullet^1 \checkmark \bullet^2 \checkmark$	f'	$(x) = (3 - 2x)^4$	• ¹ x • ² x	
f'(x)	(x) = 8	(3-2	$\left(x\right)^{3}$		f'	(4) = 625	• ³ x	
f'(4	4) = -	1000		• ³ x				
Cand	didate	e C -	differentiatiı	ng over two lines	Candidate D - differentiating over two lines			
4(3	$-2x)^{\frac{1}{2}}$	3		•1 🗸	4($(3-2x)^3$	● ¹ ✓	
4(3	-2x)	³ ×2		• ² x	4($(3-2x)^3 \times -2$	• ² ^	
-100	00			• ³ ✓ 1	100	00	• ³ 🖌 1	
Cano marl	didate k 1	e E - i	insufficient e	evidence for	Car	ndidate F	a ¹ (a ²	
f'(z)	c) = 8	(3-2	$(x)^{3}$	• ¹ * • ² *	4((x) - 2x	-3	
f'(4	4) = -	1000)	• ³ <mark>⁄ 1</mark>	-0	υυ	• 1	

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
6.			Method 1	Method 1	3
			• ¹ equate composite function to x	• ¹ $f(f^{-1}(x)) = x$	
			• ² write $f(f^{-1}(x))$ in terms of $f^{-1}(x)$	• ² $x = \frac{2}{f^{-1}(x)} + 3$	
			• ³ state inverse function	• ³ $f^{-1}(x) = \frac{2}{x-3}$	
			Method 2	Method 2	
			• ¹ write as $y = f(x)$ and start to	• ¹ $y = f(x) \Rightarrow x = f^{-1}(y)$	
			rearrange	$y - 3 = \frac{2}{x}$	
			• ² express x in terms of y	• ² $x = \frac{2}{y-3}$	
			• ³ state inverse function	• $f^{-1}(y) = \frac{2}{y-3}$	
				$\Rightarrow f^{-1}(x) = \frac{2}{x-3}$	
Not	es:				
1.	In Met	hod,	1 accept $x = \frac{2}{f^{-1}(x)} + 3$ for \bullet^1 and \bullet^2	2.	
2.	In Me	thod	2, accept ' $y-3=\frac{2}{x}$ ' without refere	nce to $y = f(x) \Rightarrow x = f^{-1}(y)$ at \bullet^1 .	
3.	In Met	hod 2	2, accept $f^{-1}(x) = \frac{2}{x-3}$ without refe	erence to $f^{-1}(y)$ at \bullet^3 .	
4.	In Met equiva	hod 2 alent	2, beware of candidates with working - see Candidates A and B for exampl	g where each line is not mathematica e.	ally
5.	At ● ³ s	tage,	accept f^{-1} written in terms of any	dummy variable eg $f^{-1}(y) = \frac{2}{y-3}$.	
6.	$y = \frac{1}{x}$	2 - 3 do	bes not gain \bullet^3 .		
7.	$f^{-1}(x)$	$\left(\frac{1}{r} \right) = \frac{1}{r}$	$\frac{2}{1-3}$ with no working gains 3/3.		
8.	In Met availa	hod 2 ble.	2, where candidates make multiple a	lgebraic errors at the \bullet^2 stage, \bullet^3 is s	still

Question	Generic scheme		Illustrative scheme	Max mark
6. (contin	ued)			_
Commonly (Observed Responses:			
Candidate A	L		Candidate B	
$\int f(x) = \frac{2}{x} + \frac{2}{x}$	3		$f(x) = \frac{2}{x} + 3$	
$y = \frac{2}{x} + 3$	7		$y = \frac{2}{x} + 3$	
$y-3=\frac{2}{x}$			$x = \frac{2}{y} + 3 \qquad -1$	• ¹ ×
$x = \frac{z}{y-3}$	I • ¹ ✓	• ² ✓	$x-3 = \frac{z}{y}$	
$y = \frac{z}{x-3}$	• ³ ×		$y = \frac{2}{x-3}$	• ² ✓ 1
$\int f^{-1}(x) = \frac{Z}{x-x}$	- 3		$f^{-1}(x) = \frac{2}{x-3}$	• ³ <u>√</u> 1
Candidate C	E - BEWARE		Candidate D	
$f'(x) = \dots$	• ³ ¥		$x \rightarrow \frac{1}{x} \rightarrow \frac{2}{x} \rightarrow \frac{2}{x} + 3 = f(x)$	
			$ \begin{array}{c} \times 2 \rightarrow +3 \\ \therefore -3 \rightarrow \div 2 \end{array} $	• ¹ 🗸
			$\frac{2}{x-3}$ (invert)	• ² ✓
			$f^{-1}(x) = \frac{2}{x-3}$	•3 🗸
Candidate E :	•1 🗸	• ² ✓	Candidate F :	• ¹ ✓ • ² ✓
$\int f^{-1}(x) = \left(\frac{x}{x}\right)$	$\left(\frac{2-3}{2}\right)^{-1}$ • ³ \checkmark		$f^{-1}(x) = \sqrt[-1]{\frac{x-3}{2}}$	•3 ✓
Candidate G	ì			
$y = \frac{2}{x} + 3$				
<i>xy</i> = 5	• ¹ x			
$x = \frac{5}{y}$	• ²	2		
$\int f^{-1}(x) = \frac{5}{x}$	• ³	1		
However	2			
$\int f^{-1}(x) = \frac{2+x}{x}$	• 3 •			

Question		on	Generic scheme	Illustrative scheme	Max mark
7.			 use double angle formula to express equation in terms of sin x° 	• ¹ = $3(1-2\sin^2 x^\circ)$	5
			• ² arrange in standard quadratic form	• ² $6\sin^2 x^\circ + \sin x^\circ - 1 = 0$	
			• ³ factorise or use quadratic formula	• ³ $(3\sin x^{\circ} - 1)(2\sin x^{\circ} + 1)(=0)$ or $\sin x^{\circ} = \frac{-1 \pm \sqrt{25}}{12}$	
				• ⁴ • ⁵	
			• ⁴ solve for $\sin x^{\circ}$	• ⁴ $\sin x^{\circ} = \frac{1}{3}$, $\sin x^{\circ} = -\frac{1}{2}$	
			• ⁵ solve for x	• ⁵ 19.47, 160.52, 210, 330	

- 1. Substituting $1-2\sin^2 A$ or $1-2\sin^2 \alpha$ for $\cos 2x^\circ$ at the \bullet^1 stage should be treated as bad form provided the equation is written in terms of x at \bullet^2 stage. Otherwise, \bullet^1 is not available.
- 2. Do not penalise the omission of degree signs.
- 3. '=0' must appear by \bullet^3 stage for \bullet^2 to be awarded. However, for candidates using the quadratic formula to solve the equation, '=0' must appear at \bullet^2 stage for \bullet^2 to be awarded.
- 4. Candidates may express the equation obtained at \bullet^2 in the form $6S^2 + S 1 = 0$, $6x^2 + x - 1 = 0$ or using any other dummy variable at the \bullet^3 stage. In these cases, award \bullet^3 for (3S-1)(2S+1) or (3x-1)(2x+1).

However, \bullet^4 is only available if $\sin x^\circ$ appears explicitly at this stage - see Candidate A.

- 5. The equation $1-6\sin^2 x^\circ \sin x^\circ = 0$ does not gain \bullet^2 unless \bullet^3 has been awarded.
- 6. •³ is awarded for identifying the factors of the quadratic obtained at •² eg " $3\sin x^{\circ} 1 = 0$ and $2\sin x^{\circ} + 1 = 0$ ".
- 7. \bullet^4 and \bullet^5 are only available as a consequence of trying to solve a quadratic equation see Candidate B.
- 8. •³, •⁴ and •⁵ are not available for any attempt to solve a quadratic equation written in the form $ax^2 + bx = c$ see Candidate C.
- 9. •⁵ is only available where at least one of the equations at •⁴ leads to two solutions for x.
- 10. Do not penalise additional (correct) solutions at •⁵. However see Candidates E and F.
- 11. Accept answers which round to 19, 19.5 and 161.

Question	Generic scheme		Illustrative scheme	Max mark
7. (continu	led)			
Commonly O	bserved Responses:			
Candidate A	• ¹ 🗸 •	2 🗸	Candidate B - not solving a quadrati :	C , ¹ √
$6S^{2} + S - 1 =$ (3S - 1)(2S +	$\begin{pmatrix} 0 \\ \cdot 1 \end{pmatrix} = 0 \qquad \bullet^3 \checkmark$		$6\sin^2 x^\circ + \sin x^\circ - 1 = 0$ $7\sin x^\circ - 1 = 0$	$a^2 \checkmark$
$S = \frac{1}{3}, S = -$	$-\frac{1}{2}$ • ⁴ ^	:	$\sin x^{\circ} = \frac{1}{7}$	⁴ ✓ 2
<i>x</i> = 19.5, 160.	5, 210, 330 • ⁵ 🖌 1		x = 8.2	v <u>v</u> 2
Candidate C $\sin x^\circ + 2 = 3$ $6 \sin^2 x^\circ + \sin^2 \sin^2 x^\circ$	- not in standard quadratic f $-6 \sin^2 x^\circ$ $\bullet^1 \checkmark$ $x^\circ = 1$ $\bullet^2 \checkmark_2$ $x^\circ + 1) = 1$ $\bullet^3 \checkmark_2$	orm (Candidate D - reading $\cos 2x^\circ$ as $\cos \sin x^\circ + 2 = 3\cos^2 x^\circ$ $\sin x^\circ + 2 = 3(1 - \sin^2 x^\circ)$ $3\sin^2 x^\circ + \sin x^\circ - 1 = 0$	$s^2 x^\circ$ $r^1 x$
$\sin x^\circ = 1$ 90, 221.8, 31	$6 \sin x^{\circ} + 5 = 1$ $\Rightarrow \sin x = -\frac{4}{6} \qquad \bullet^{4} \times$ 8.2 $\bullet^{5} \times$		$\sin x^{\circ} = \frac{-1 \pm \sqrt{13}}{6}$ $\sin x^{\circ} = 0.434, \sin x^{\circ} = -0.767$ 25.7, 154.3, 230.1, 309.9	
Candidate E : $(3\sin x^{\circ} - 1)($	$2\sin x^{\circ} + 1) = 0$ $4 \sin x^{\circ} + 1 = 0$	2 🧹	Candidate F : $(3\sin x^{\circ}-1)(2\sin x^{\circ}+1)=0$	$1 \checkmark 0^2 \checkmark$
$ \begin{array}{c c} \sin x^\circ = -, \\ x = 19, x = 1 \\ \text{However,} \\ \text{clearly iden} \end{array} $	$\sin x^{\circ} = -\frac{1}{2} \qquad \bullet^{4} \checkmark$ 61 $x = 30$ $x = 210, x = 330 \bullet^{5} \ast$ where the final solution(s) a tified by the candidate awar	re d ●⁵	$\sin x^{\circ} = \frac{1}{3}$, $\sin x^{\circ} = -\frac{1}{2}$ x = 19, 161, 30, 210, 330	9 ⁴ ✓

Q	uestic	n	Generic scheme	Illustrative scheme	Max mark
8.			Method 1	Method 1	5
			• ¹ integrate using "upper - lower"	•1 $\int ((x^3 - 2x^2 - 4x + 1) - (x - 5)) dx$	
			• ² identify limits	• ² $\int_{-2}^{1} \left(\left(x^3 - 2x^2 - 4x + 1 \right) - \left(x - 5 \right) \right) dx$	
			• ³ integrate	• ³ $\frac{x^4}{4} - \frac{2x^3}{3} - \frac{5x^2}{2} + 6x$	
			• ⁴ substitute limits	• ⁴ $\left(\frac{(1)^4}{4} - \frac{2(1)^3}{3} - \frac{5(1)^2}{2} + 6(1)\right) -$	
				$\left(\frac{\left(-2\right)^{4}}{4}-\frac{2\left(-2\right)^{3}}{3}-\frac{5\left(-2\right)^{2}}{2}+6\left(-2\right)\right)$	
			• ⁵ calculate shaded area	• ⁵ $\frac{63}{4}$ or $15\frac{3}{4}$	
			Method 2	Method 2	5
			 ¹ know to integrate between appropriate limits for both integrals 	• $\int_{-2}^{1} \dots dx$ and $\int_{-2}^{1} \dots dx$	
			• ² integrate both functions	• ² $\frac{x^4}{4} - \frac{2x^3}{3} - \frac{4x^2}{2} + x$ and $\frac{x^2}{2} - 5x$	
			• ³ substitute limits into both expressions	• ³ $\left(\frac{(1)^4}{4} - \frac{2(1)^3}{3} - \frac{4(1)^2}{2} + (1)\right)$	
				$-\left(\frac{\left(-2\right)^{4}}{4}-\frac{2\left(-2\right)^{3}}{3}-\frac{4\left(-2\right)^{2}}{2}+\left(-2\right)^{2}$	
				and $\left(\frac{(1)^2}{2} - 5(1)\right) - \left(\frac{(-2)^2}{2} - 5(-2)\right)$	
			• ⁴ evaluate both integrals	• 4 $-\frac{3}{4}$ and $-\frac{33}{2}$	
			 ⁵ evidence of subtracting areas 	• $^{5} -\frac{3}{4} - \left(-\frac{33}{2}\right) = \frac{63}{4}$	

(Question	Generic scheme	Illustrative scheme	Max mark
8.	(continued))		
Not	es:			
1.	Correct ans	wer with no working - award 1/5.		
2.	In Method 1 obtained at	, treat the absence of brackets at • ¹ sta • ³ - see Candidates A and B.	age as bad form only if the correct inte	gral is
3.	Do not pena	lise lack of ' dx ' at \bullet^1 .		
4.	Limits and ' stage for \bullet^1	dx ' must appear by the \bullet^2 stage for \bullet^2 to be awarded in Method 2.	to be awarded in Method 1 and by the	• ¹
5.	Where a car	ndidate differentiates one or more tern	is at \bullet^3 , then \bullet^3 , \bullet^4 and \bullet^5 are unavailat	ole.
6.	Accept unsi	mplified expressions at \bullet^3 e.g. $\frac{x^4}{4} - \frac{2x^3}{3}$	$-\frac{4x^2}{2} + x - \frac{x^2}{2} + 5x$.	
7.	Do not pena	lise the inclusion of $+c$.		
8. 9.	Do not pena Candidates	lise the continued appearance of the in who substitute limits without integration in the substitute limits without integration of the substitute limits without integrating without integrate limits with	Itegral sign after \bullet^2 Ing do not gain \bullet^3 , \bullet^4 or \bullet^5 .	
10.	• ⁵ is not ava	ilable where solutions include stateme	nts such as $-\frac{63}{4} = \frac{63}{4}$ square units '-	see
	Candidate B			
11.	Where a car \bullet^3 and \bullet^4 are	ndidate only integrates $x^3 - 2x^2 - 4x + 1$ e available (from Method 1).	or another cubic or quartic expression	ı, only

Question	Generic scheme	Illustrative scheme	Max mark
8. (continued)			
Commonly Obse	erved Responses:		
Candidate A - b	ad form corrected	Candidate B	
$\int_{-2}^{1} x^3 - 2x^2 - 4x +$	$-1-x-5dx$ $\bullet^2\checkmark$	$\int_{-2}^{1} x^3 - 2x^2 - 4x + 1 - x - 5 dx$	• ¹ ≭ • ² ✓
$=\frac{x^4}{4}-\frac{2x^3}{3}-\frac{5x^2}{2}$ Bad form at • ¹ m	e^{2} $-+6x$ $e^{3} \checkmark \Rightarrow e^{1} \checkmark$ hust be corrected by the integration	$=\frac{x^{4}}{4}-\frac{2x^{3}}{3}-\frac{5x^{2}}{2}-4x$ $=\left(\frac{(1)^{4}}{4}-\frac{2(1)^{3}}{3}-\frac{5(1)^{2}}{2}-4(1)\right)$	• ³ <mark>∕ 1</mark>
stage and ma	y also take the form of a missing minus sign	$-\left(\frac{(-2)^{4}}{4}-\frac{2(-2)^{3}}{3}-\frac{5(-2)^{2}}{2}-4(-2)\right)$	● ⁴ ✓ 1
		$-\frac{57}{4}$ cannot be negative so $=\frac{57}{4}$	∍ ⁵ ×
		However, $\int \dots = -\frac{57}{4}$ so Area $= \frac{57}{4}$	⁵ <mark>∕ 1</mark>
Candidate C - lo	ower – upper	Candidate D - reversed limits	
$\int_{-2}^{1} ((x-5)-(x^3-$	$(2x^2-4x+1))dx$ $\bullet^2\checkmark$	$\int_{1}^{-2} \left(\left(x^{3} - 2x^{2} - 4x + 1 \right) - \left(x - 5 \right) \right) dx$	•1 ✓
$-\frac{x^4}{4}+\frac{2x^3}{3}+\frac{5}{3}$	$\frac{x^2}{2}-6x$ • ³ \checkmark	$\frac{x^4}{4} - \frac{2x^3}{3} - \frac{5x^2}{2} + 6x$	J ³ ✓
$\left(-\frac{(1)^4}{4}+\frac{2(1)^3}{3}+\frac$	$-\frac{5(1)^2}{2}-6(1)$ -	$\left(\frac{\left(-2\right)^{4}}{4} - \frac{2\left(-2\right)^{3}}{3} - \frac{5\left(-2\right)^{2}}{2} + 6\left(-2\right)\right)$	
$\left \left(-\frac{(-2)^4}{4} + \frac{2(-2)^4}{3} \right) \right = \frac{1}{3} \left(-\frac{1}{3} \right)^4 + \frac{1}{3} \left(-\frac{1}{3} \left(-\frac{1}{3} \right)^4 + \frac{1}{3} \left(-\frac{1}{$	$\frac{)^{3}}{2} + \frac{5(-2)^{2}}{2} - 6(-2) \bigg) \bullet^{4} \checkmark$	$-\left(\frac{(1)^{4}}{4}-\frac{2(1)^{3}}{3}-\frac{5(1)^{2}}{2}+6(1)\right)$	∮4 ✓
$-\frac{63}{4}$		$-\frac{63}{4}$	
So Area $=\frac{63}{4}$	● ¹ ✔ ● ⁵ ✔	So Area $=\frac{63}{4}$	• ² ✓ • ⁵
Candidate E - 'ı	upper' – 'lower'	-	
$=x^{3}-2x^{2}-5x+$	6		
$\int_{-2}^{1} (x^3 - 2x^2 - 5x)$	$+6)dx$ $\bullet^1 \checkmark \bullet^2 \checkmark$		
$\left \frac{x^4}{4} - \frac{2x^3}{3} - \frac{5x^2}{2}\right $	$-+6x$ $\bullet^3\checkmark$		
$\frac{37}{12} - \left(-\frac{38}{3}\right)$	•4 🗸		
$\left \frac{63}{4} \right $	•5 🗸		

Question		on	Generic scheme	Illustrative scheme	Max mark
9.	(a)		• ¹ use compound angle formula	• $k \sin x^{\circ} \cos a^{\circ} + k \cos x^{\circ} \sin a^{\circ}$ stated explicitly	4
			• ² compare coefficients	• ² $k \cos a^\circ = -3, k \sin a^\circ = 7$ stated explicitly	
			• ³ process for k	• ³ \sqrt{58}	
			 ⁴ process for <i>a</i> and express in required form 	• $\sqrt{58}\sin(x+113.19)^\circ$.	
Note	s:	-	·	·	

- 1. Do not penalise the omission of degree symbols in this question.
- 2. Accept $k(\sin x^{\circ} \cos a^{\circ} + \cos x^{\circ} \sin a^{\circ})$ at •¹.
- 3. Treat $k \sin x^{\circ} \cos a^{\circ} + \cos x^{\circ} \sin a^{\circ}$ as bad form only if the equations at the \bullet^2 stage both contain k.
- 4. $\sqrt{58} \sin x^{\circ} \cos a^{\circ} + \sqrt{58} \cos x^{\circ} \sin a^{\circ}$ or $\sqrt{58} (\sin x^{\circ} \cos a^{\circ} + \cos x^{\circ} \sin a^{\circ})$ are acceptable for \bullet^{1} and \bullet^{3} .
- 5. •² is not available for $k \cos x^\circ = -3$ and $k \sin x^\circ = 7$, however •⁴ may still be gained see Candidate E.
- 6. •³ is only available for a single value of k, k > 0.
- 7. •⁴ is not available for a value of a given in radians.
- 8. Accept values of *a* which round to 113.
- 9. Candidates may use any form of the wave function for \bullet^1 , \bullet^2 and \bullet^3 . However, \bullet^4 is only available if the wave is interpreted in the form $k \sin(x+a)^\circ$.
- 10. Evidence for \bullet^4 may appear in part (b).

Question	Gener	ric scheme	Illustrative scheme		Max mark
9. (continued))				
Commonly Obse	erved Responses	:			
Candidate A $\sqrt{58} \cos a^\circ = -3$ $\sqrt{58} \sin a^\circ = 7$	• ¹ ∧ • ² ✓• ³ ✓	Candidate B $k \sin x^{\circ} \cos a^{\circ} + k \cos^{\circ}$ $\bullet^{1} \checkmark$ $\cos a^{\circ} = -3$ $\sin a^{\circ} = 7$	$sx^{\circ}\sin a^{\circ}$	Candidate C $\sin x^{\circ} \cos a^{\circ} + \cos x^{\circ} \sin a^{\circ}$ $\cos a^{\circ} = -3$ $\sin a^{\circ} = 7$ $k = \sqrt{58}$	° • ¹ x • ² <mark>√</mark> 2 • ³ √
$\tan a^\circ = -\frac{7}{3}$ $a = 113.19$ $\sqrt{58}\sin(x+113)$.19)° •⁴ ✔	$\tan a^\circ = -\frac{7}{3}$ $\tan a^\circ = -$	consistent equations 2.)°• ³ \checkmark • ⁴ x	$\tan a^{\circ} = -\frac{7}{3}$ a = 113.19 $\sqrt{58} \sin(x + 113.19)^{\circ}$	• ⁴ ¥
Candidate D - e $k \sin x \cos a + k \cos a$	errors at \bullet^2 $\cos x \sin a \bullet^1 \checkmark$	Candidate E - use o $k \sin x \cos a + k \cos x$	$f x at \bullet^2 \\ \sin a \bullet^1 \checkmark$	Candidate F $k \sin A \cos B + k \cos A \sin B$	3 • ¹ ×
$k \cos a^{\circ} = 7$ $k \sin a^{\circ} = -3$ $\tan a^{\circ} = -\frac{3}{7}$ a = 336.80	• ² ×	$k \cos x^{\circ} = -3$ $k \sin x^{\circ} = 7$ $\tan a^{\circ} = -\frac{7}{3}$ a = 113.19 $\sqrt{58} \sin(x + 113.19)$	• ² ×	$k \cos A = -3$ $k \sin A = 7$ $\tan A = -\frac{7}{3}$ A = 113.19 $\sqrt{58} \sin(x + 113.19)^{\circ}$	• ² ×
v 30 sm (x + 330		• ³ √• ⁴ √1	••)	()	<u> </u>

Q	uestic	on	Generic scheme		Illustrative scheme	Max mark
9.	(b)	(i)	• ⁵ state maximum value		• ⁵ 2√58	1
		(ii)	Method 1		Method 1	2
			• ⁶ start to solve		• $x + 113.19 = 90$ leading to $x = -23.19$	
			• ⁷ state value of <i>x</i> Method 2		• ⁷ x = 336.80 Method 2	
			• ⁶ start to solve		• $x + 113.19 = 450$	
			• ⁷ state value of x		• ⁷ $x = 336.80$	
Note	s:	1				1
11. • C 12. •	⁷ is on andid ⁷ is on	ily ava ate G ily ava	ailable where an angle outwith the ailable where • ⁶ has been awarded.	rans Hov	ge $0 \le x < 360$ needs to be considered wever, see Candidate K.	- see
Com	monly	/ Obse	erved Responses:			
Candidate G - not considering angle outwith $0 \le x < 360$ $\sqrt{58} \sin(x-23)^\circ$ from part (a) x-23 = 90 x = 113 $e^6 \checkmark_1$ $e^7 \checkmark_2$				Car (i) (ii)	hdidate H - simplification $2\sqrt{58} = \sqrt{58} \sin(x+113)^\circ = \sqrt{58}$ x+113 = 90 x = -23 x = 337 x = 337	
				_		
Canc (i) ¬	lidate /58 2. <u>/58</u> /	I - fo	llow-through marking $\bullet^5 \times$ $\pm 113)^\circ - \sqrt{58}$	Car (i) (ii)	ndidate J - graphical approach $\sqrt{58}$ • ⁵ × max occurs when $x + 113 = 90$	
	(ii) $2\sqrt{58} \sin(x+113)^\circ = \sqrt{58}$ x+113 = 30 x = -83 x = 277 $x^7 \checkmark 1$					
Candidate K - no acknowledgement of $\times 2$ (i) $\sqrt{58}$ $\bullet^5 \times$ (ii) $\sqrt{58} \sin(x+113)^\circ = \sqrt{58}$ x+113 = 90 $x = -23$ $\bullet^6 \times$ $x = 337$ $\bullet^7 \checkmark 1$						

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark		
10.			Method 1	Method 1	4		
			• ¹ differentiate one term	• ¹ $6x^2$ or +18x or -24			
			• ² complete differentiation and interpret condition	• ² $6x^2 + 18x - 24 < 0$			
			• ³ determine zeros of quadratic expression	• ³ 1 and -4			
			• ⁴ state range with justification	• ⁴ $-4 < x < 1$ with eg labelled sketch			
			Method 2	Method 2	4		
			• ¹ differentiate one term	• ¹ $6x^2$ or +18x or -24			
			• ² complete differentiation and determine zeros of quadratic expression	• ² $6x^2 + 18x - 24$ and 1 and -4			
			• ³ construct nature table(s)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
			 ⁴ interpret sign of derivative and state range 	• ⁴ decreasing when $f'(x) < 0$ so -4 < x < 1			
Note	s:	I					
1. A q 2. • 3. A 4. A	 At •³ do not penalise candidates who fail to extract the common factor or who have divided the quadratic inequality by 6. •³ and •⁴ are not available to candidates who arrive at a linear expression at •². Accept the appearance of -4 and 1 within inequalities for •³. At •⁴, accept "x > -4, x < 1" together with the required justification. 						
Com	monly	/ Obse	erved Responses:				
Cand $6x^2$	lidate + 18x	A - 24 <	$< 0 \qquad \bullet^1 \checkmark \bullet^2 \checkmark$	Candidate B - no initial inequation			
$6x^2$ -	+18x	-24 =	= 0	$6x^2 + 18x - 24 = 0 \qquad \qquad \bullet^1 \checkmark \bullet$	2 🗴		
<i>x</i> = -	-4, 1		• ³ ✓	x = -4, 1			
-4 < x < 1 with sketch		1 with	n sketch •4 🗸	$-4 < x < 1$ with sketch $\bullet^4 *$			
Candidate C Decreasing when $f'(x) < 0$				Candidate D - condition applied after simplification			
	-asing	,2 ,10	$\frac{1}{2} \left(\frac{\lambda}{2} \right) = 0$	$f'(x) = 6x^2 + 18x - 24$ • ¹			
$\int (x)$:	ι ΤΙΟ		$x^2 + 3x - 4 < 0 \qquad \qquad \bullet^2 \land$			
	÷			$x = -4, 1$ • ³ \checkmark			
				$-4 < x < 1$ with sketch $\bullet^4 \checkmark$			

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark		
11.	(a)		\bullet^1 state centre of C ₁	• ¹ (4, -2)	3		
			\bullet^2 state centre of C ₂	• ² (-1, 3)			
			• ³ calculate distance between centres	• ³ $\sqrt{50}$ or $5\sqrt{2}$ or 7.07			
Note	s:						
1. A 2. C	Accept Do not	x = 4 penal	4, $y = -2$ for \bullet^1 and $x = -1$, $y = 3 \bullet^2$. ise lack of brackets in \bullet^1 and \bullet^2 .	Do not accept $g = 1$, $f = -3$ for \bullet^2 .			
Com	monly	v Obse	erved Responses:				
	(b)		\bullet^4 state radius of C ₁	• ⁴ $r_1 = \sqrt{37}$ or 6.08	3		
			• ⁵ calculate radius of C ₂	• ⁵ $r_2 = \sqrt{17}$ or 4.12			
			• ⁶ demonstrate and communicate result	 •⁶ 10.20 > 7.07 (> 1.95) ∴ circles intersect at two distinct points 			
Note	s:	<u> </u>					
3 4	ccent	$\sqrt{1^2}$ +	$\frac{1}{\sqrt{12^2 + 7}} = \sqrt{17}$ or $\sqrt{1^2 + -3^2 + 7} = \sqrt{17}$ fo	r ● ⁵ However, do not accept			
1	$\sqrt{\left(-1\right)^2}$	+ 3 ² -	$\frac{3}{7} = \sqrt{17}$.				
 At •⁶ comparison must be made using decimals. Do not accept √37 + √17 > √50 without any further working. Evidence for •⁴ and •⁵ may be found in part (a). For candidates who use simultaneous equations, award •⁴ for substitution of y = x+1 into the equation of one of the circles, •⁵ for rearranging in standard quadratic form and •⁶ for obtaining distinct <i>x</i>-coordinates. Do not penalise the omission of "at two distinct points" at •⁶. 							
Com	monly	0bse	erved Responses:				

Questic	on	Generic scheme	Illustrative scheme	Max mark
12.		• ¹ integrate one term	• ¹ eg $\frac{8x^4}{4}$	4
		• ² complete integration	• ² eg+3x+c	
		• ³ substitute for x and y	• ³ $3 = \frac{8 \times (-1)^4}{4} + 3 \times (-1) + c$	
		• ⁴ state expression for y	$\bullet^4 y = 2x^4 + 3x + 4$	
Notes:				
1. For car	ndidat	es who omit $+c$ only \bullet^1 is available		
 For car Do not 	ndidat penal	es who differentiate either term, \bullet^2 lise the appearance of an integral sig	, \bullet^3 , and \bullet^4 are not available. gn and/or dx at \bullet^2 and \bullet^3 .	
Commonly	v Obse	erved Responses:		
Candidate	A - ir	ncomplete substitution	Candidate B - partial integration	
$y = 2x^4 + 3$	3x+c	• ¹ • • ² •	$y = 2x^4 + 3 + c \qquad \qquad \bullet^1 \checkmark \bullet^2 \checkmark$	
$v = 2(-1)^4$	+3(-	-1) + c	$3 = 2(-1)^4 + 3 + c$ • ³ \checkmark 1	
c = 4		• ³ •	c = -2	
$y = 2x^4 + 3$	3x + 4	•4 🖌 1	$y = 2x^4 + 1 \qquad \qquad \bullet^4 \checkmark_1$	
Candidate C - integrating over two lines				
$y = 2x^4 + 3$	3 <i>x</i>	• ¹ ✓ • ² ¥		
$y = 2x^4 + 3$	3x + c			
$3 = 2(-1)^4$	+3(-	$-1)+c$ $\bullet^3\checkmark$		
$y = 2x^4 + 3$	3x + 4	•4 🗸		

Question		n	Generic scheme	Illustrative scheme	Max mark				
13.	(a)		• ¹ calculate concentration	• ¹ 9.38 (mg/l)	1				
Note	Notes:								
1. 4	1. Accept any answer which rounds to 9.4 for \bullet^1 .								
Com	monly	' Obse	erved Responses:						
	(b)		• ² substitute	• ² 0.66 = $11 \times e^{-0.0053 t}$	3				
			• ³ write in logarithmic form	• ³ $\log_e \frac{0.66}{11} = -0.0053t$					
			• ⁴ process for t	• ⁴ 530.83 (minutes)					
Note	es:								
2. V 3. E 4. A 5. A 6. A 7. A 8. • 9. T 10. F	 Where values other than 0.66 are used in the substitution, •³ and •⁴ are still available. Evidence for •³ must be stated explicitly. At •³ all exponentials must be processed. Any base may be used at •³ stage - see Candidate A. Accept ln 0.06 = -0.0053t ln e for •³. Accept any answer where 530 ≤ t ≤ 532 at •⁴. •⁴ is unavailable where a candidate rounds the value of ln 0.06 to fewer than 2 decimal places. The calculation at •⁴ must follow from the valid use of exponentials and logarithms at •² and •³. For candidates with no working or who take an iterative approach to arrive at t = 532, t = 531 or t = 530 award 1/3. However, if, in any iterations C_t is evaluated for t = 530 and t = 531 leading to a final answer of t = 531 (minutes) then award 3/3. 								
Commonly Observed Responses:									
Cand 0.66 0.06 $\log_1 t = 5$	didate b = 11e $b = e^{-0}$ $_0 0.06$ 31 mir	A -0.0053t = -0.	$e^{2} \checkmark$ $0053t \log_{10} e \qquad e^{3} \checkmark$ $e^{4} \checkmark$	Candidate B $0.66 = 11e^{-0.0053t}$ $e^2 \checkmark$ $t = 531$ minutes $e^3 \land e^2$	¥ 🔨 1				

Question			Generic scheme	Illustrative scheme	Max mark
14.	(a)	(i)	• ¹ express A in terms of x and h	• ¹ $(A=)6x^2+10xh$	1
		(ii)	 ² express h in terms of x ³ substitute for h and demonstrate result 	• ² $h = \frac{7200 - 6x^2}{10x}$ • ³ $V = 3x \times 2x \times \left(\frac{7200 - 6x^2}{10x}\right)$ leading to $V = 4320x - \frac{18}{5}x^3$	2

1. Accept unsimplified expressions for \bullet^1 .

2. \bullet^2 is only available where the (simplified) expression for A contains at least 2 terms.

3. The substitution for h at \bullet^3 must be clearly shown for \bullet^3 to be awarded.

Commonly Observed Responses:

(b)	• ⁴ differentiate	• 4 4320 $-\frac{54}{5}x^2$	4
	 ⁵ equate expression for derivative to 0 	• ⁵ 4320 $-\frac{54}{5}x^2 = 0$	
	• ⁶ solve for x	•6 20	
	• ⁷ verify nature	• ⁷ table of signs for a derivative x 20	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		\therefore maximum (when $x = 20$)	

Notes:

- 4. For any approach which does not use differentiation award 0/4.
- 5. ⁵ can be awarded for $\frac{54}{5}x^2 = 4320$.
- 6. For candidates who integrate any term at the •⁴ stage, only •⁵ is available on follow through for setting their 'derivative' to 0.
- 7. Ignore the appearance of -20 at mark \bullet^6 .
- 8. Where -20 is considered in a nature table (or second derivative), "x = 20" must be clearly identified as leading to the maximum area.
- 9. •⁶ and •⁷ are not available to candidates who state that the maximum exists at a negative value of x.

10. Do not penalise statements such as "max volume is 20" or "max is 20" at \bullet^7 .

Q	Question		Generic scheme		Illustrative scheme	Max mark
15.			• ¹ determine gradient of tangent		• $^{1} -\frac{1}{3}$	4
			• ² determine gradient of radius		• ² 3	
			• ³ strategy to find centre		• ³ eg $y = 3x - 1$ or $3 = \frac{y - 5}{x - 2}$	
			• ⁴ state coordinates of centre		•4 (0,-1)	
Note	s:					
1. I	gnore	error	rs in processing the constant term in	n ●¹.		
2. [Do not	acce	ept $m = -\frac{1}{3}x$ for \bullet^1 . However \bullet^2 , \bullet^3	and	$ullet^4$ are still available where the candidate	ate
ι	uses a	nume	erical value for m_{\perp} .			
3. /	Accept	t y-!	$5 = 3(x-2)$ as evidence for \bullet^3 .			
4.	⁴ is o	nly av	ailable as a consequence of trying	to fi	nd and use a perpendicular gradient al	ong
_ \	vith a	point	t on the <i>y</i> -axis.			
5.	Where	e cand	lidates use "stepping out" with the with the solution to gain a^3 and a^4	per	pendicular gradient, the diagram must	be
6.	Accept	t " <i>x</i> =	= 0". " $v = -1$ " stated explicitly for	• ⁴ .		
Com	monly	Obse	erved Responses:			
Canc state	idate d	A - p	erpendicular gradient clearly	Candidate B - no communication for perpendicular gradient		
<i>x</i> + 3	y = 1	7		<i>x</i> +	-3y = 17	
					1 17	
	2		1 / 2 /	<i>y</i> =	$\frac{1}{3}x + \frac{1}{3}$	
$m_{\perp} =$: 3		••• • •- •	<i>m</i> =	$= 3 \qquad \bullet^1 \wedge \bullet^2 \checkmark_1$	
y = z	3x-1		••• •	<i>y</i> =	$= 3x - 1$ $\bullet^3 \checkmark_1$	
					• ⁴ is available	j
Cand	idate	C - n	o communication for	Car	ndidate D - using geometry	
perp	endic	ular g	gradient or rearrangement	:	$\bullet^1 \checkmark \bullet^2 \checkmark \bullet^3 \checkmark$	•
<i>x</i> +3	y = 17	7		Usiı	ng point diametrically opposite (2,5), b	y
m = 1	3		$\bullet^1 \wedge \bullet^2 \wedge$	sym	metry identify that x-coordinate is -2 .	
y = 3	3x-1		● ³ <mark>▼ 2</mark>	$\therefore y$	=3(-2)-1=-7.	
● ⁴ is not available					The is midpoint of $(-2, -7)$ and $(2, 5)$. The entre is $(0, -1)$	
Cand	Candidate E - incorrect gradient					
x+3	y = 17	7				
3y =	-x+c	17				
m_{\perp} =	= 1		● ¹ ^ ● ² ¥			
$1 = \frac{5}{1}$	-y		• ³ 🔨 1			
2	-0					
Cent	re is a	nt (0,1	3) ● ⁴ <mark>✓</mark> 1			

[END OF MARKING INSTRUCTIONS]