

2017 Mathematics Paper 1 (Non-calculator)

Higher

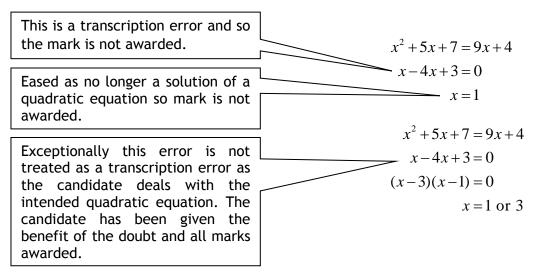
Finalised Marking Instructions

 $\ensuremath{\mathbb{C}}$ Scottish Qualifications Authority 2017

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.


General marking principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely Illustrative Scheme and Generic Scheme. The illustrative scheme covers methods which are commonly seen throughout the marking. The generic scheme indicates the rationale for which each mark is awarded. In general, markers should use the illustrative scheme and only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these general marking principles and the detailed marking instructions for this assessment.
- (b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
- (c) If a specific candidate response does not seem to be covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
- (d) Credit must be assigned in accordance with the specific assessment guidelines.
- (e) One mark is available for each •. There are no half marks.
- (f) Working subsequent to an error must be **followed through**, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- (g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
- (h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
- (i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6 = 12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (j).

(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

Horizontal:
$${}^{6}x = 2$$
 and $x = -4$
 ${}^{6}y = 5$ $y = -7$
Horizontal: ${}^{6}x = 2$ and $x = -4$
 ${}^{6}y = 5$ and $y = -7$
 ${}^{6}x = -4$ and $y = 5$
 ${}^{6}x = -4$ and $y = -7$

Markers should choose whichever method benefits the candidate, but **not** a combination of both.

(I) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:

 $\frac{15}{12} \text{ must be simplified to } \frac{5}{4} \text{ or } 1\frac{1}{4} \qquad \frac{43}{1} \text{ must be simplified to } 43$ $\frac{15}{0\cdot 3} \text{ must be simplified to } 50 \qquad \frac{\frac{4}{5}}{3} \text{ must be simplified to } \frac{4}{15}$ $\sqrt{64} \text{ must be simplified to } 8^*$

*The square root of perfect squares up to and including 100 must be known.

(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.

- (n) Unless specifically mentioned in the marking instructions, the following should not be penalised:
 - Working subsequent to a correct answer
 - Correct working in the wrong part of a question
 - Legitimate variations in numerical answers/algebraic expressions, eg angles in degrees rounded to nearest degree
 - Omission of units
 - Bad form (bad form only becomes bad form if subsequent working is correct), eg $(x^3+2x^2+3x+2)(2x+1)$ written as $(x^3+2x^2+3x+2)\times 2x+1$

 $2x^4 + 4x^3 + 6x^2 + 4x + x^3 + 2x^2 + 3x + 2$ written as $2x^4 + 5x^3 + 8x^2 + 7x + 2$ gains full credit

- Repeated error within a question, but not between questions or papers
- (o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
- (p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- (q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
- (r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark.

Where a candidate has tried different valid strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Specific marking instructions for each question

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark			
1.	(a)		• ¹ evaluate expression	• ¹ 10	1			
Note	es:							
Commonly Observed Responses:								

Q	Question		Generic scheme	Illustrative scheme	Max mark
1.	1. (b) • ² interpret notation			• ² $g(5x)$	
			• ³ state expression for $g(f(x))$	$\bullet^3 2\cos 5x$	2
2. C n 3. پر 4. پ	andid ot gains $f(f(x))$	$ \begin{array}{l} \operatorname{lates} \\ \operatorname{in} \operatorname{any} \\ \operatorname{any} \\ \operatorname{any} \\ \operatorname{any} \\ \operatorname{any} \\ = 1 \\ \operatorname{any} \\$	y marks. $10\cos x$ award \bullet^2 . However, $10\cos x$	• ³ . on as either $g(x) \times f(x)$ or $g(x) + j$ x with no working does not gain any r rect 'simplification' of the function a	narks.
			served Responses:		
_	didate	= 2 co	$s(5x) = e^{2} \cdot e^{3}$		

Qı	Question		Generic scheme	Illustrative scheme	Max mark			
2.	• ¹ state coordinates of centre			• ¹ (4, 3)				
	• ² find gradient of radius		• ² find gradient of radius	• ² $\frac{1}{3}$				
			• ³ state perpendicular gradient	• ³ -3				
			• ⁴ determine equation of tangent	•4 $y = -3x - 5$	4			
Note	s:							
1. A	ccept	$\frac{2}{6}$ for	$r \bullet^2$.					
 b 2. The perpendicular gradient must be simplified at •³ or •⁴ stage for •³ to be available. 3. •⁴ is only available as a consequence of trying to find and use a perpendicular gradient. 4. At •⁴, accept y+3x+5=0, y+3x=-5 or any other rearrangement of the equation where the constant terms have been simplified. 								
Com	monly	^o Obs	served Responses:					

Question		on	Generic scheme	Illustrative scheme	Max mark
3.		• ¹ start to differentiate		• $12(4x-1)^{11}$	
			• ² complete differentiation	• ² ×4	2
Note		varda	d for correct application of the cha		
			served Responses:		
				Candidate B	
Wor	Candidate A $\frac{dy}{dx} = 12(4x-1)^{11} \times 4 \bullet^{1} \checkmark \bullet^{2} \checkmark$ $\frac{dy}{dx} = 36(4x-1)^{11}$ Working subsequent to a correct answer: General Marking Principle (n)			$\frac{dy}{dx} = 36(4x-1)^{11} \bullet^{1} \times \bullet^{2} \times$ ncorrect answer with no working	

Q	uestio	on	Generi	ic scheme	Illus	trative scheme	Max mark
4.			Method 1 •1 use the discriminant		• $4^2 - 4 \times 12^{-1}$	Method 1 • $4^2 - 4 \times 1 \times (k-5)$	
			• ² apply condition	on and simplify	• ² 36-4 k =	0 or $36 = 4k$	
			• ³ determine the	e value of k	• ³ $k=9$		3
			Method 2 •1 communicate and express in factorised form		Method 2 • ¹ equal roots $\Rightarrow x^2 + 4x + (k-5) = (x+2)^2$		
			• ² expand and c	ompare	• ² $x^2 + 4x +$	• ² $x^2 + 4x + 4$ leading to $k - 5 = 4$	
			• ³ determine the	e value of k	• ³ $k = 9$		
is 2. Ir	t the brac	ketec hod 1	in their next lin if candidates use	e of working. See	Candidates A	candidate treats ' $k-5$ and B. iminant = 0 ' then \bullet^2 is le	
Com	monl	y Obs	served Response	s:			
Can	didate	e A		Candidate B			
4 ² –	$4^2 - 4 \times 1 \times k = 5$ $\bullet^1 \checkmark$		$4^2 - 4 \times 1 \times k - 5$	• ¹ x			
36-	36-4k=0 • ²		11 - 4k = 0	● ² ✓ 1			
<i>k</i> = 1	9		• ³ •	$k = \frac{11}{4}$	● ³ √ 1		

Question	Generic scheme	Illustrative scheme	Max mark						
5. (a)	•1 evaluate scalar product	• ¹ 1	1						
Notes:	•								
Commonly Obs	Commonly Observed Responses:								

Question	Generic scheme	Illustrative scheme	Max mark					
5. (b)	•² calculate u	• ² \sqrt{27}						
	• ³ use scalar product	• ³ $\sqrt{27} \times \sqrt{3} \times \cos \frac{\pi}{3}$						
	• ⁴ evaluate u.w	• $\frac{9}{2}$ or 4.5	3					
Notes:								
1. Candidates who treat negative signs with a lack of rigour and arrive at $\sqrt{27}$ gain \bullet^2 . 2. Surds must be fully simplified for \bullet^4 to be awarded.								
Commonly Obs	Commonly Observed Responses:							

Qı	uestion	Generic scheme	Illustrative scheme	Max mark			
6.		Method 1	Method 1				
		• ¹ equate composite function to x	• ¹ $h(h^{-1}(x)) = x$				
		• ² write $h(h^{-1}(x))$ in terms of $h^{-1}(x)$	• ² $(h^{-1}(x))^3 + 7 = x$				
		• ³ state inverse function	• ³ $h^{-1}(x) = \sqrt[3]{x-7}$ or $h^{-1}(x) = (x-7)^{\frac{1}{3}}$				
				3			
		Method 2	Method 2				
		• ¹ write as $y = x^3 + 7$ and start to rearrange	• ¹ $y-7=x^3$				
		• ² complete rearrangement	• ² $x = \sqrt[3]{y-7}$				
		• ³ state inverse function	• ³ $h^{-1}(x) = \sqrt[3]{x-7}$ or $h^{-1}(x) = (x-7)^{\frac{1}{3}}$				
			$h^{-1}(x) = (x-7)^3$	3			
		Method 3	Method 3				
		• ¹ interchange variables	• ¹ $x = y^3 + 7$				
		• ² complete rearrangement	• ² $y = \sqrt[3]{x-7}$				
		• ³ state inverse function	• ³ $h^{-1}(x) = \sqrt[3]{x-7}$ or $h^{-1}(x) = (x-7)^{\frac{1}{3}}$				
			$h^{-1}(x) = (x-7)^{\overline{3}}$	3			
Note							
1. y	1. $y = \sqrt[3]{x-7} \left(\text{or } y = (x-7)^{\frac{1}{3}} \right)$ does not gain • ³ .						
2. A	t • ³ stage	, accept h^{-1} expressed in terms of an	y dummy variable eg $h^{-1}(y) = \sqrt[3]{y-7}$				
3. h	$e^{-1}(x) = \sqrt[3]{}$	$\overline{x-7}$ or $h^{-1}(x) = (x-7)^{\frac{1}{3}}$ with no wor	king gains 3/3.				

Question	Generic s	scheme	Illustrative scheme	Max mark
Commonly Obs	served Responses:			
Candidate A				
	$x \to x^3 \to x^3 + 7 = h$ ^3 \rightarrow + 7 $\therefore -7 \to \sqrt[3]{}$	r(x)	 ¹√ awarded for knowing to per the inverse operations in re order 	
	$\sqrt[3]{x-7}$		● ² ✓	
	•			
	$h^{-1}(x) = \sqrt[3]{x-7}$		• ³ ✓	
Candidate B - I	BEWARE	Candidate C		
$h'(x) = \dots \bullet^3 \mathbf{x}$		$h^{-1}(x) = \sqrt[3]{x} - 7$ With no working		

	uestion	Gener	ic scheme	Illus	trative scheme	Max mark				
7.		• ¹ find midpoin	nt of AB	• ¹ (2,7)						
		• ² demonstrate	e the line is vertical	• ² m_{median} UI	ndefined					
		• ³ state equation	on	• ³ $x = 2$		3				
Note	es:									
1. <i>r</i>	$n_{median} = \frac{\pm 4}{0}$	alone is not suffi	cient to gain \bullet^2 . Ca	ndidates mus	t use either 'vertical' o	r				
	0	. However \bullet^3 is s								
2.	$m_{median} = \frac{4}{0}$	* ' ' $m_{median} = \frac{4}{0}$ in	npossible' ' $m_{median} = -$	$\frac{4}{2}$ infinite'	are not acceptable for	• ² .				
F	•	these are follow			ined' then award \bullet^2 , an					
3.	$m_{median} = \frac{4}{0}$	= 0 undefined' '	$m_{median} = -$ undefined	'are not ac	ceptable for \bullet^2 .					
	•		Ū		ent; however, see notes	5 and 6.				
					the coordinates of A ar					
			without any further	errors awar	d 1/3. However, if $a =$	2, then				
6. F	or candida	both \bullet^2 and \bullet^3 are available. 6. For candidates who find $15y = 2x + 121$ (median through B) or $3y = 2x + 21$ (median through								
	A) award 1/3.									
	A) award 1/	•	y = Zx + IZI (median	through B) c	or $3y = 2x + 21$ (median	through				
		•		through B) c	or $3y = 2x + 21$ (median	through				
Com		3. served Response			or $3y = 2x + 21$ (median Candidate C	through				
Com	monly Ob didate A	/3.	es:	•1√	- · ·	through				
Com Can	monly Ob didate A 7)	3. served Response	Candidate B (2,7) $m = \frac{4}{0}$		Candidate C (2,7)	through				
$\begin{array}{c} \text{Com} \\ \text{Can} \\ (2,7) \\ m = \\ = 0 \end{array}$	$\frac{1}{2}$	3. served Response • ¹ ✓ d • ² x	Candidate B $(2,7)$ $m = \frac{4}{0}$ $= 0$	• ¹ ✓	Candidate C (2,7) $m = \frac{4}{0}$	 ∍1√				
Com Can (2,7 m =	$\frac{1}{2}$	'3. served Response ● ¹ ✓	Candidate B (2,7) $m = \frac{4}{0}$	•1√	Candidate C (2,7) $m = \frac{4}{0}$ $y - 7 = \frac{4}{0}(x - 2)$	 ∍1√				
$\begin{array}{c} \text{Com} \\ \text{Can} \\ (2,7) \\ m = \\ = 0 \end{array}$	$\frac{1}{2}$	3. served Response • ¹ ✓ d • ² x	Candidate B $(2,7)$ $m = \frac{4}{0}$ $= 0$	• ¹ ✓	Candidate C (2,7) $m = \frac{4}{0}$ $y - 7 = \frac{4}{0}(x-2)$ 0 = 4x - 8	 ∍1√				
$\begin{array}{c} \text{Com} \\ \text{Cane} \\ (2,7) \\ m = \\ = 0 \\ x = \end{array}$	$\frac{1}{2}$	'3. served Response • ¹ √ d • ² ¥ • ³ √1	Candidate B $(2,7)$ $m = \frac{4}{0}$ $= 0$ $y = 7$ Candidate E	• ¹ √ • ² x • ³ √2	Candidate C (2,7) $m = \frac{4}{0}$ $y - 7 = \frac{4}{0}(x-2)$ 0 = 4x - 8	2^				
$\begin{array}{c} \text{Com} \\ \text{Cane} \\ (2,7) \\ m = \\ = 0 \\ x = \end{array}$	didate A 7) $\frac{4}{0}$ undefine 2 didate D	3. served Response • ¹ ✓ d • ² x	Candidate B $(2,7)$ $m = \frac{4}{0}$ $= 0$ $y = 7$	• ¹ ✓	Candidate C (2,7) $m = \frac{4}{0}$ $y - 7 = \frac{4}{0}(x-2)$ 0 = 4x - 8	2^				
$\begin{array}{c} \text{Com} \\ \text{Can} \\ (2,7) \\ m = \\ = 0 \\ x = \\ \end{array}$	didate A 7) 4 0 undefine 2 didate D 7)	3. served Response • ¹ √ d • ² × • ³ √1	Candidate B $(2,7)$ $m = \frac{4}{0}$ $= 0$ $y = 7$ Candidate E	• ¹ √ • ² x • ³ √2	Candidate C (2,7) $m = \frac{4}{0}$ $y - 7 = \frac{4}{0}(x-2)$ 0 = 4x - 8	2^				
Com Can (2,7) m = = 0 x = Can (2,7) Med	didate A 7) 4 0 undefine 2 didate D 7)	'3. served Response • ¹ √ d • ² ¥ • ³ √1	Candidate B $(2,7)$ $m = \frac{4}{0}$ $= 0$ $y = 7$ Candidate E (2,7)	• ¹ \checkmark • ² \star • ³ \checkmark 2 have an x	Candidate C (2,7) $m = \frac{4}{0}$ $y - 7 = \frac{4}{0}(x-2)$ 0 = 4x - 8	2^				

Que	estion		Generi	ic schem	e		Illus	strative s	scheme	Max mark
8.		• ¹ write in differentiable form				$\bullet^1 \frac{1}{2}$	t^{-1}			
		• ² differentiate			•2 -	$-\frac{1}{2}t^{-2}$				
Notes:		• ³ eval	uate der	ivative		•3 -	1 50			3
2. ● ² is		ailable fo	or differ	entiating		-			m at \bullet^1 award 0 ower of t .	/3.
Candio	late A			Candida	ate B			Candid	ate C	
$2t^{-1}$ $-2t^{-2}$	• ¹ • ²			$2t^{-1}$ $-2t^{-2}$		1		$-\frac{1}{2}t^{-2}$	$\bullet^1 \checkmark$ implied b	y •²✓
$-\frac{2}{25}$	• ³	✓1		$-\frac{1}{50}$	• ³ ×	-		$-\frac{1}{50}$	•3 ✓	
Candic	late D		Candid	ate E		Candida Bad for		ain rule	Candidate G	
$(2t)^{-1}$	● ¹ ✓		$(2t)^{-1}$	• ¹	✓	$2t^{-1}$		● ¹ ✓	$2t^{-1}$	• ¹ ×
$-(2t)^{-}$	$-(2t)^{-2} \bullet^{2} \mathbf{x} - (2t)^{-2}$		• ²	x	$-2t^{-2} \times 2$	2	• ² 🗸	$-2t^{-2} \times 2$ $-\frac{4}{25}$	• ² ×	
$-\frac{1}{100}$	• ³	1	$-\frac{2}{25}$	• ³	×	- <u>1</u> 50		•3 🗸	$-\frac{4}{25}$	● ³ √ 1

Q	uesti	on	Generic scheme	Illustrative scheme	Max mark
9.	(a)		 ¹ interpret information ² state the value of <i>m</i> 	• ¹ 13 = 28 <i>m</i> +6 stated explicitly or in a rearranged form • ² $m = \frac{1}{4}$ or $m = 0.25$	
					2
Note	es:				
1. 5	Statin	gʻ <i>m</i> ∶	$=\frac{1}{4}$ or simply writing $\frac{1}{4}$ with	no other working gains only \bullet^2 .	
Com	monl	y Obs	served Responses:		
Can	didate	e A		Candidate B	
13 =	28 <i>u</i> _n	+6	• ¹ ×	28 = 13m + 6 • ¹ x	
$u_n =$	<u>1</u> 4		• ² 1	$m = \frac{22}{13} \qquad \qquad \bullet^2 \checkmark 1$	

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
9.	(b)	(i)	• ³ communicate condition for	• ³ a limit exists as the recurrence	
			limit to exist	relation is linear and $-1 < \frac{1}{4} < 1$	1
Note	es:				
	or " <u>1</u> 2 • ³ is n -1 or	y of state $\frac{1}{4}$ lies ot ava $1 \le \frac{1}{4} \le \frac{1}{4}$	ot: $-1 < \frac{1}{4} < 1$ or $\left \frac{1}{4}\right < 1$ or $0 < \frac{1}{4}$ ments such as: between -1 and 1" or " $\frac{1}{4}$ is ailable for: ≤ 1 or $\frac{1}{4} < 1$ ments such as: etween -1 and 1." or " $\frac{1}{4}$ is	a proper fraction "	
			who state $-1 < m < 1$ can only gair in part (a).	\bullet^3 if it is explicitly stated	
		4	ept ' $-1 < a < 1$ ' for \bullet^3 .		
Com	monl	y Obs	erved Responses:		
Can	didate	e C		Candidate D	
(a) (b)		$=\frac{1}{4}$		(a) $\frac{1}{4}$ $\bullet^1 \checkmark \bullet^2$ (b) $-1 < m < 1$ $\bullet^3 \checkmark$	✓

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
9.	(b)	(ii)	• ⁴ know how to calculate limit	• ⁴ $\frac{6}{1-\frac{1}{4}}$ or $L = \frac{1}{4}L + 6$	
			● ⁵ calculate limit	•5 8	2
Note	es:	·			
7. • 6 8. F 9. F	⁴ and alcul or <i>L</i> or ca	• ⁵ are ation = 8 w ndida	ept $L = \frac{b}{1-a}$ with no further working e not available to candidates who configurates of further terms in the sequence. with no working, award 0/2. The who use a value of m appearing the part (a) \bullet^4 and \bullet^5 are not available.		th their
Com	monl	y Obs	served Responses:		
Cano	didate	e E - I	no valid limit		
(a) <i>n</i>	n = 4	•	• ¹ ×		
(b) <i>I</i>	$L = \frac{6}{1-1}$ $L = -2$	<u>5</u> - 4	• ⁴ √ 1 • ⁵ x		

Qı	uestio	n	Generic scheme	Illustrative scheme	Max mark
10.	(a)		 know to integrate between appropriate limits 	Method 1 • $\int_{0}^{2} \dots dx$	
			• ² use "upper - lower"	• ² $\int_{0}^{5} ((x^{3} - 4x^{2} + 3x + 1) - (x^{2} - 3x + 1))$	
			• ³ integrate	• $\frac{x^4}{4} - \frac{5x^3}{3} + 3x^2$	
			• ⁴ substitute limits	• ⁴ $\left(\frac{2^4}{4} - \frac{5 \times 2^3}{3} + 3 \times 2^2\right) - (0)$	
			● ⁵ evaluate area	• ⁵ $\frac{8}{3}$	
				Method 2	
			 know to integrate between appropriate limits for both integrals 	• $\int_{0}^{2} \dots dx$ and $\int_{0}^{2} \dots dx$	
			• ² integrate both functions	• ² $\frac{x^4}{4} - \frac{4x^3}{3} + \frac{3x^2}{2} + x$ and $\frac{x^3}{3} - \frac{3x^2}{2} + x$	
			• ³ substitute limits into both functions	• ³ $\left(\frac{2^4}{4} - \frac{4(2^3)}{3} + \frac{3(2^2)}{2} + 2\right) - 0$ and $\left(\frac{2^3}{3} - \frac{3(2^2)}{2} + 2\right) - 0$	
			• ⁴ evaluation of both functions	• $\frac{4}{3}$ and $\frac{-4}{3}$	
			• ⁵ evidence of subtracting areas	• $\frac{4}{3} - \frac{-4}{3} = \frac{8}{3}$	5

Question	Generi	ic scheme	Illus	trative scheme	Max mark
Notes:					
 Treat the a obtained at obtained at Where a caunavailable Accept uns Do not pen Candidates •⁴ is only at 	ubsence of bracke t • ³ . See Candida andidate differen e. implified express alise the inclusio who substitute I vailable if there	ates A and B. tiates one or mor sions at \bullet^3 e.g. $\frac{x^2}{4}$ on of '+c'. limits without int	bad form only i re terms at • ³ , t $\frac{4}{2} - \frac{4x^3}{3} + \frac{3x^2}{2} +$ egrating do not the lower limit	5 2	
Commonly Obs	erved Response	s:			
Candidate A $\int_{0}^{1} \sqrt{x^{3} - 4x^{2} + 3x^{2}}$ $\frac{x^{4}}{4} - \frac{5x^{3}}{3} + 3x^{2}$	$+1-x^2-3x+1 dx$	$x \Rightarrow \bullet^2 \checkmark$	$\frac{x^{4}}{4} - \frac{5x^{3}}{3} + 2x$ $\int \dots = -\frac{16}{3} \text{ canr}$	$+1 - x^{2} - 3x + 1 dx \bullet^{2}$ \bullet^{3} not be negative so $=\frac{16}{3}$ $= -\frac{16}{3}$ so Area $=\frac{16}{3} \bullet^{5} \checkmark$	√ 1
		Tre	ating individua	l integrals as areas	
Candidate C - I • ¹ \checkmark • ² \checkmark • ³ \checkmark $\frac{4}{3}$ and $\frac{-4}{3}$ \therefore Area is $\frac{4}{3} - \left(\frac{4}{3}\right)$	4	Candidate D - M • ¹ \checkmark • ² \checkmark • ³ \checkmark $\frac{4}{3}$ and $\frac{-4}{3}$ • ⁴ $=\frac{4}{3}$ \therefore Area is $\frac{4}{3} + \frac{4}{3}$	√	Candidate E - Method a • ¹ \checkmark • ² \checkmark • ³ \checkmark $\frac{4}{3}$ and $\frac{-4}{3}$ • ⁴ \checkmark Area cannot be negativ \therefore Area is $\frac{4}{3} + \frac{4}{3} = \frac{8}{3}$ • ⁵	/e

Que	estio	n	Generic scheme	Illustrative scheme	Max mark
10.	(b)		• ⁶ use "line - quadratic"	Method 1 • ⁶ $\int ((1-x)-(x^2-3x+1)) dx$	
			• ⁷ integrate	$\bullet^7 -\frac{x^3}{3} + x^2$	
			• ⁸ substitute limits and evaluate integral	• ⁸ $\left(-\frac{2^3}{3}+2^2\right)-(0)=\frac{4}{3}$	
			• ⁹ state fraction	• $9 \frac{1}{2}$	
			• ⁶ use "cubic - <i>line</i> "	Method 2 • $^{6}\int ((x^{3}-4x^{2}+3x+1)-(1-x))dx$	
			•° use "cubic - line"	• ⁷ $\frac{x^4}{4} - \frac{4x^3}{3} + 2x^2$	
			• ⁷ integrate	+ 5	
			• ⁸ substitute limits and evaluate integral	$\bullet^{8} \left(\frac{2^{4}}{4} - 4 \times \frac{2^{3}}{3} + 2 \times 2^{2} \right) - (0) = \frac{4}{3}$	
			• ⁹ state fraction	• $9 \frac{1}{2}$	
				Method 3	
			• ⁶ integrate line	$\bullet^6 \int (1-x) dx = \begin{bmatrix} 2\\ x \\ x \\ 2 \end{bmatrix}_0^2$	
			• ⁷ substitute limits and evaluate integral	$\bullet^7 \left(2 - \frac{2^2}{2}\right) - (0) = 0$	
			 evidence of subtracting integrals 	•80- $\left(-\frac{4}{3}\right) = \frac{4}{3} \text{ or } \frac{4}{3} = 0$	
			• ⁹ state fraction	• $9 \frac{1}{2}$	4

Question	Generic scheme	Illustrative scheme	Max mark
Notes:			
candidate ha	Notes prefixed by *** may be subj s been penalised for the error in (a same error in (b).	- · · ·	
10. In Method correct in 11. Candidat to the ab 12. Where a unavailat	ot available to candidates who omit ds 1 and 2 only, treat the absence of ntegral is obtained at • ⁷ . es who have an incorrect expression sence of brackets lose • ² , but are aw candidate differentiates one or more ole. es where Note 3 has applied in part (⁶ brackets at \bullet^6 stage as bad form on to integrate at the \bullet^3 and \bullet^7 stage duvarded \bullet^6 . e terms at \bullet^7 , then \bullet^7 , \bullet^8 and \bullet^9 are	ie solely
13. In Method	ds 1 and 2 only, accept unsimplified	expressions at • ⁷ e.g. $x - \frac{x^2}{2} - \frac{x^3}{3} + \frac{3}{2}$	$\frac{x^2}{2} - x$
14. Do not pe	enalise the inclusion of ' $+c$ '.		
	Methods 1 and 2 and \bullet^7 in method 3 in the formula of the formu	s only available if there is evidence	that the
16. At the • ⁹ awarded.	stage, the fraction must be consiste	nt with the answers at $ullet^5$ and $ullet^8$ for $ullet$	⁹ to be
17. Do not pe	enalise errors in substitution of $x = 0$	at \bullet^8 in Method 1 & 2 or \bullet^7 in Metho	d 3.
Commonly Obs	served Responses:		

Question	Generic scheme	Illustrative scheme	Max mark
11.	 •¹ determine the gradient of given line or of AB •² determine the other gradient •³ find a 	Method 1 •1 $\frac{2}{3}$ or $\frac{a-2}{12}$ •2 $\frac{a-2}{12}$ or $\frac{2}{3}$ •3 10	
	 ¹ determine the gradient of given line ² equation of line and substitute 	stated or implied by • ² • ² $y-2 = \frac{2}{3}(x+7)$	
Notes:	• ³ solve for a	$a-2=\frac{2}{3}(5+7)$ • ³ 10	3
Commonly O Candidate A simultaneous $m_{\text{line}} = \frac{2}{3}$ 3y = 2x + 20 3y = 2x - 10 + 0 0 = 0 + 30 - 3a 3a = 30 a = 10	equations $m_{AB} = \frac{a-2}{12} \bullet^{1}$ $\frac{a-2}{12} = -2 \bullet^{2}$ $a = -22 \bullet^{3}$	x y-2= $\frac{2}{3}(x+7)$ 3y=2x+20 3y=2×5+20 3y=30 y=10	2 ,2 ✓

Q	uestic	on	Gener	ic scheme	Illus	trative schem	e	Max mark
12.			• ¹ use laws of l	ogs	• ¹ $\log_a 9$			
			• ² write in expo	onential form	• ² $a^{\frac{1}{2}} = 9$			
			• ³ solve for a		• ³ 81			3
Note	es:				r			
2. A 3. • ²	4 ccept ² may	log 9 be ir	Θ at \bullet^1 . nplied by \bullet^3 .	or \bullet^2 stage for \bullet^1 to	be awarded.			
			served Response					
Cano	didate	e A		Candidate B		Candidate C		
\log_a	144		• ¹ ¥	$\log_a 32$	• ¹ 🗴	$\log_a 9$	●1 🗸	
$a^{\frac{1}{2}} =$	= 144		● ² <mark>√1</mark>	$a^{\frac{1}{2}} = 32$	● ² ✓1	$a = 9^{\frac{1}{2}}$	• ² ¥	
a = '	12		• ³ x		•3 ^	<i>a</i> = 3	• ³ √ 2	
	didate							
2 log	g _a 36 -	$-2\log$	$g_a 4 = 1$					
\log_a	36² -	$-\log_a$	$4^2 = 1 \bullet^1 \checkmark$					
	$\frac{36^2}{4^2}$ =							
\log_a	81=1	1 4	• ² ✓					
a = 8	81		●3✓					

Quest	ion	Generic scheme	Illustrative scheme	Max mark
13.		• ¹ write in integrable form	• $(5-4x)^{-\frac{1}{2}}$	
		• ² start to integrate	• $(5-4x)^{-\frac{1}{2}}$ • $\frac{(5-4x)^{\frac{1}{2}}}{\frac{1}{2}}$	
		• ³ process coefficient of x	• ³ × $\frac{1}{(-4)}$	
Notes:		• ⁴ complete integration a simplify	nd $e^4 -\frac{1}{2}(5-4x)^{\frac{1}{2}}+c$	4
 For a form For a form If ca brace '+ c 	candic n awar andida :ket no ' is reo	d 0/4. tes start to integrate individual te o further marks are available. quired for• ⁴ .	t, only • ¹ is available. ator' without attempting to write in int erms within the bracket or attempt to e	
		served Responses:	Can didata D	
Candidat	te a		Candidate B	
$(5-4x)^{-2}$	<u>1</u> 2	•1 🗸	$(5-4x)^{\frac{1}{2}}$ $\bullet^1 x$	
$\left \begin{array}{c} \frac{(5-4x)^{\frac{1}{2}}}{\frac{1}{2}} \end{array} \right $	-	• ² ✓ • ³ ^	$\frac{\left(5-4x\right)^{\frac{3}{2}}}{\frac{3}{2}} \times \frac{1}{\left(-4\right)} \qquad \qquad \bullet^{2} \checkmark 1 \bullet^{3}$	✓
2(5-4x)	$(\frac{1}{2} + C)$	• ⁴ <mark>√</mark> 2	$-\frac{(5-4x)^{\frac{3}{2}}}{6}+c$ • ⁴ 1	
Candidat	te C		Candidate D	
Different	tiate ii	n part:	Differentiate in part:	
$(5-4x)^{-2}$	<u>1</u> 2	•1 🗸	$\left(5-4x\right)^{-\frac{1}{2}} \qquad \bullet^1 \checkmark$	
$-\frac{1}{2}(5-4)$			$(5-4x)^{-\frac{1}{2}} \qquad \bullet^{1} \checkmark$ $\frac{(5-4x)^{\frac{1}{2}}}{\frac{1}{2}} \times (-4) \qquad \bullet^{2} \checkmark \bullet^{3} \varkappa$ $-8(5-4x)^{\frac{1}{2}} + c \qquad \bullet^{4} \checkmark 1$	
$\left \frac{1}{8} (5-4x) \right $	$)^{-2} + c$	• ⁴ <mark>√1</mark>	$-8(5-4x)^{\frac{1}{2}}+c$ • ⁴ \checkmark 1	

Q	uestio	on	Generic Scheme	Illustrative Scheme	Max Mark
14.	(a)		• ¹ use compound angle formula	• $k \sin x^{\circ} \cos a^{\circ} - k \cos x^{\circ} \sin a^{\circ}$ stated explicitly	
			• ² compare coefficients	• ² $k \cos a^\circ = \sqrt{3}, k \sin a^\circ = 1$ stated explicitly	
			• ³ process for k	• ³ $k = 2$	
			• ⁴ process for <i>a</i> and express in required form	• $4 2\sin(x-30)^{\circ}$	4
Note	es:				
1. A	ccept	k(sin	$a^{\circ}\cos a^{\circ} - \cos x^{\circ}\sin a^{\circ})$ for \bullet^{1} . Trea	t $k \sin x^{\circ} \cos a^{\circ} - \cos x^{\circ} \sin a^{\circ}$ as bad f	orm

- only if the equations at the $ullet^2$ stage both contain k .
- 2. Do not penalise the omission of degree signs.

3. $2\sin x^{\circ}\cos a^{\circ} - 2\cos x^{\circ}\sin a^{\circ}$ or $2(\sin x^{\circ}\cos a^{\circ} - \cos x^{\circ}\sin a^{\circ})$ is acceptable for \bullet^{1} and \bullet^{3} .

- 4. In the calculation of k = 2, do not penalise the appearance of -1.
- 5. Accept $k \cos a^{\circ} = \sqrt{3}, -k \sin a^{\circ} = -1$ for •².
- 6. •² is not available for $k \cos x^{\circ} = \sqrt{3}$, $k \sin x^{\circ} = 1$, however, •⁴ is still available.
- 7. •³ is only available for a single value of k, k > 0.
- 8. •³ is not available to candidates who work with $\sqrt{4}$ throughout parts (a) and (b) without simplifying at any stage.
- 9. •⁴ is not available for a value of a given in radians.
- 10. Candidates may use any form of the wave equation for \bullet^1 , \bullet^2 and \bullet^3 , however, \bullet^4 is only available if the value of a is interpreted in the form $k \sin(x-a)^\circ$
- 11. Evidence for \bullet^4 may only appear as a label on the graph in part (b).

Commonly Observed Responses:

Responses with missing information in working:

$ \begin{array}{c} \bullet^{1} \wedge \\ 2\cos a = \sqrt{3} \\ 2\sin a = 1 \\ \tan a = \frac{1}{\sqrt{3}}, a = 30 \\ 2\sin(x - 30)^{\circ} \\ \end{array} \begin{array}{c} \bullet^{1} \wedge \\ \bullet^{2} \checkmark \bullet^{3} \checkmark \\ \left\{ \begin{array}{c} k\sin x\cos a - k\cos x\sin a \bullet^{1} \checkmark \\ \cos a = \sqrt{3} \\ \sin a = 1 \\ \tan a = \frac{1}{\sqrt{3}} \\ \operatorname{Not \ consistent} \end{array} \right\} $
$2\sin a = 1$ $\tan a = \frac{1}{\sqrt{3}}, a = 30$ $e^{2} \checkmark e^{3} \checkmark \cos a = \sqrt{3}$ $\sin a = 1$ $\tan a = \frac{1}{\sqrt{3}}$
a = 30 with equations at • ² . $2\sin(x-30)^{\circ}$ • ³ ✓ • ⁴ ¥

Question	Gener	ic Scheme	Illustrative Scheme		Max Mark
Responses wit	h the correct ex	pansion of $k \sin(x -$	$a)^{\circ}$ but erro	rs for either \bullet^2 or \bullet^4 .	
Candidate C		Candidate D		Candidate E	
$k\cos a = \sqrt{3}, k \sin a$	$\sin a = 1 \bullet^2 \checkmark$	$k\cos a = 1, k\sin a =$	√3 •² ≭	$k\cos a = \sqrt{3}, k\sin a = -$	-1 ● ² ≭
$\tan a = \sqrt{3}$ $a = 60$	•4 🗴	$\tan a = \sqrt{3}$ a = 60 $2\sin(x - 60)^{\circ}$	● ⁴ √ 1	$\tan a = -\frac{1}{\sqrt{3}}, \ a = 330$	
				$2\sin(x-330)^{\circ}$	● ⁴ √ 1
Responses wit	h the incorrect l	abelling; k sin A cos	$B-k\cos As$	in B from formula list.	
Candidate F		Candidate G		Candidate H	
$k \sin A \cos B - k$	$k \cos A \sin B \bullet^1 x$	$k \sin A \cos B - k \cos B$	$A \sin B \bullet^{1} \varkappa$	$k \sin A \cos B - k \cos A s$	in B ●¹ ≭
$k\cos a = \sqrt{3}$		$k\cos x = \sqrt{3}$		$k\cos \mathbf{B} = \sqrt{3}$	
$k \sin a = 1$	• ² ✓	$k \sin x = 1$	• ² 🗶	$k\cos \mathbf{B} = \sqrt{3}$ $k\sin \mathbf{B} = 1$	• ² x
$\tan a = \frac{1}{\sqrt{3}}, a =$	= 30	$\tan x = \frac{1}{\sqrt{3}}, x = 30$		$\tan B = \frac{1}{\sqrt{3}}, B = 30$ $2\sin(x-30)^{\circ} \bullet^{3}$	
$2\sin(x-30)^{\circ}$	● ³ ✓ ● ⁴ ✓	$2\sin(x-30)^{\circ}$	● ³ √ ● ⁴ √ 1	$2\sin(x-30)^\circ$ • ³	∕•⁴ ✓1

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
14.	(b)		• ⁵ roots identifiable from graph	• ⁵ 30 and 210	
			• ⁶ coordinates of both turning points identifiable from graph	• ⁶ (120, 2) and (300, -2)	
			• ⁷ y-intercept and value of y at $x = 360$ identifiable from graph	• ⁷ –1	3
Note	es:				
14. 15. 16.	 13. Ignore any part of a graph drawn outwith 0 ≤ x ≤ 360. 14. Vertical marking is not applicable to •⁵ and •⁶. 15. Candidates sketch arrived at in (b) must be consistent with the equation obtained in (a), see also candidates I and J. 16. For any incorrect horizontal translation of the graph of the wave function arrived at in part(a) only •⁶ is available. 				
Com	monl	y Obs	served Responses:		
Cano	didate	e		Candidate J	
(a)2	(a) $2\sin(x-30)$ correct equation			(a) $2\sin(x+30)$ incorrect equation	
(b) Incorrect translation: Sketch of $2\sin(x+30)$				(b) Sketch of $2\sin(x+30)$	
	• ⁶ is			All 3 marks are available	

Q	uestion	Generic scheme	Illustrative scheme	Max mark
15.	(a)	\bullet^1 state value of a	• ¹ -5	
		\bullet^2 state value of b	• ² 3	2
Note	es:			
Com	monly Obs	served Responses:		

Question		on	Generic scheme		Illustrative Scheme		
15.	(b)		• ³ state value of integral	• ³	10	1	
1. C 2. Ir n a	 Notes: 1. Candidates answer at (b) must be consistent with the value of b obtained in (a). 2. In parts (b) and (c), candidates who have 10 and -6 accompanied by working, the working must be checked to ensure that no errors have occurred prior to the correct answer appearing. Commonly Observed Responses: 						
From $a = -b$	-3 • ¹ , 5 • ²	¢	• ³ <u>√1</u>				

Question		on	Generic scheme		Illustrative scheme		
15.	5. (c)		• ⁴ state value of derivative	• ⁴	-6	1	
Notes:							
Commonly Observed Responses:							
Com	imoni	ly UDS	served Responses:				

[END OF MARKING INSTRUCTIONS]

2017 Mathematics Paper 2

Higher

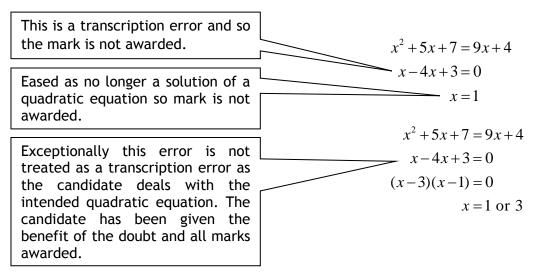
Finalised Marking Instructions

 $\ensuremath{\mathbb{C}}$ Scottish Qualifications Authority 2017

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.


General marking principles for Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

For each question the marking instructions are generally in two sections, namely Illustrative Scheme and Generic Scheme. The illustrative scheme covers methods which are commonly seen throughout the marking. The generic scheme indicates the rationale for which each mark is awarded. In general, markers should use the illustrative scheme and only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these general marking principles and the detailed marking instructions for this assessment.
- (b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
- (c) If a specific candidate response does not seem to be covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
- (d) Credit must be assigned in accordance with the specific assessment guidelines.
- (e) One mark is available for each •. There are no half marks.
- (f) Working subsequent to an error must be **followed through**, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- (g) As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
- (h) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
- (i) As a consequence of an error perceived to be trivial, casual or insignificant, eg $6 \times 6 = 12$ candidates lose the opportunity of gaining a mark. However, note the second example in comment (j).

(j) Where a transcription error (paper to script or within script) occurs, the candidate should normally lose the opportunity to be awarded the next process mark, eg

(k) Horizontal/vertical marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example:

•⁵ •⁶
•⁵
$$x = 2$$
 $x = -4$
•⁶ $y = 5$ $y = -7$

Horizontal: $\bullet^5 x = 2$ and x = -4 $\bullet^6 y = 5$ and y = -7Vertical: $\bullet^5 x = 2$ and y = 5 $\bullet^6 x = -4$ and y = -7

Markers should choose whichever method benefits the candidate, but **not** a combination of both.

(I) In final answers, unless specifically mentioned in the detailed marking instructions, numerical values should be simplified as far as possible, eg:

 $\frac{15}{12} \text{ must be simplified to } \frac{5}{4} \text{ or } 1\frac{1}{4} \qquad \frac{43}{1} \text{ must be simplified to } 43$ $\frac{15}{0\cdot 3} \text{ must be simplified to } 50 \qquad \qquad \frac{\frac{4}{5}}{3} \text{ must be simplified to } \frac{4}{15}$ $\sqrt{64} \text{ must be simplified to } 8^*$

*The square root of perfect squares up to and including 100 must be known.

(m) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.

- (n) Unless specifically mentioned in the marking instructions, the following should not be penalised:
 - Working subsequent to a correct answer
 - Correct working in the wrong part of a question
 - Legitimate variations in numerical answers/algebraic expressions, eg angles in degrees rounded to nearest degree
 - Omission of units
 - Bad form (bad form only becomes bad form if subsequent working is correct), eg $(x^3+2x^2+3x+2)(2x+1)$ written as $(x^3+2x^2+3x+2)\times 2x+1$

 $2x^4 + 4x^3 + 6x^2 + 4x + x^3 + 2x^2 + 3x + 2$ written as $2x^4 + 5x^3 + 8x^2 + 7x + 2$ gains full credit

- Repeated error within a question, but not between questions or papers
- (o) In any 'Show that...' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow-through from a previous error unless specified in the detailed marking instructions.
- (p) All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- (q) Scored-out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
- (r) Where a candidate has made multiple attempts using the same strategy and not identified their final answer, mark all attempts and award the lowest mark.

Where a candidate has tried different valid strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Q	Question		Generic scheme	Illustrative scheme	Max mark	
1.	(a)		• ¹ find mid-point of BC	• ¹ (6,-1)		
			• ² calculate gradient of BC	• ² $-\frac{2}{6}$		
			• ³ use property of perpendicular lines	• ³ 3		
			• ⁴ determine equation of line in a simplified form	•4 $y = 3x - 19$	4	
Note	Notes:					
2. T fo	 •⁴ is only available as a consequence of using a perpendicular gradient and a midpoint. The gradient of the perpendicular bisector must appear in simplified form at •³ or •⁴ stage for •³ to be awarded. At •⁴, accept 3x-y-19=0, 3x-y=19 or any other rearrangement of the equation where 					

3. At •⁴, accept 3x - y - 19 = 0, 3x - y = 19 or any other rearrangement of the equation where the constant terms have been simplified.

Commonly Observed Responses:

Question	Generic scheme	Illustrative scheme	Max mark
1. (b)	• ⁵ use $m = \tan \theta$	• ⁵ 1	
	• ⁶ determine equation of AB	• ⁶ $y = x - 3$	2
Notes:		·	

4. At \bullet^6 , accept y - x + 3 = 0, y - x = -3 or any other rearrangement of the equation where the constant terms have been simplified.

Commonly Observed Responses:

Question	Generic scheme	Illustrative scheme	Max mark					
1. (c)	• ⁷ find x or y coordinate	• ⁷ $x = 8$ or $y = 5$						
	• ⁸ find remaining coordinate	• ⁸ $y = 5$ or $x = 8$	2					
Notes:	Notes:							
Commonly Observed Responses:								

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
2.	(a)		Method 1	Method 1	
			 ¹ know to use x=1 in synthetic division 	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	
			• ² complete division, interpret result and state conclusion	• ² 1 $\begin{vmatrix} 2 & -5 & 1 & 2 \\ 2 & -3 & -2 \\ \hline 2 & -3 & -2 & 0 \\ Remainder = 0 \therefore (x-1) \text{ is a factor} \end{vmatrix}$	2
			Method 2	Method 2	
			• ¹ know to substitute $x = 1$	• $1^{2}(1)^{3} - 5(1)^{2} + (1) + 2$	
			• ² complete evaluation, interpret result and state conclusion	• ² = 0 $\therefore (x-1)$ is a factor	2
			Method 3	Method 3	
			 ¹ start long division and find leading term in quotient 	• ¹ $2x^2$ (x-1) $2x^3 - 5x^2 + x + 2$	
			• ² complete division, interpret result and state conclusion	• ² $\frac{2x^{2} - 3x - 2}{(x - 1) \sqrt{2x^{3} - 5x^{2} + x + 2}}$ $\frac{2x^{3} - 2x^{2}}{-3x^{2} + x}$ $\frac{-3x^{2} + 3x}{-2x + 2}$ $\frac{-2x + 2}{0}$ remainder = 0 \therefore (x-1) is a factor	
					2

Question	Generic scheme	Illustrative scheme	Max mark
Notes:			
working mus 2. Accept any • 'f(• 'sinc	st arrive legitimately at 0 before \bullet^2 c of the following for \bullet^2 : 1) = 0 so $(x-1)$ is a factor' ce remainder = 0, it is a factor' 0 from any method linked to the wor	rking at that stage i.e. a candidate's an be awarded. d 'factor' by e.g. 'so', 'hence', '∴',	
• doul • ' <i>x</i> = · (<i>x</i> ·	pt any of the following for \bullet^2 : ble underlining the zero or boxing the x = -1 is a factor', $(x+1)$ is a factor', (x-1) is a root' $x = -1$ is a root'. word 'factor' only with no link		

Commonly Observed Responses:

Q	Question		Generic scheme	Illustrative scheme	Max mark
2.	(b)		• ³ state quadratic factor	• 3 $2x^{2}-3x-2$	
			• ⁴ find remaining factors	• ⁴ (2x+1) and (x-2)	
			$ullet^5$ state solution	• ⁵ $x = -\frac{1}{2}$, 1, 2	3

Notes:

- 4. The appearance of "=0" is not required for \bullet^5 to be awarded.
- 5. Candidates who identify a different initial factor and subsequent quadratic factor can gain all available marks.
- 6. \bullet^5 is only available as a result of a valid strategy at \bullet^3 and \bullet^4 .

7. Accept
$$\left(-\frac{1}{2},0\right)$$
, $(1,0)$, $(2,0)$ for \bullet^{5}

Commonly Observed Responses:

Q	uestion	Generic scheme	Illustrative scheme	Max mark	
3.		• ¹ substitute for <i>y</i>	• ¹ $(x-2)^2 + (3x-1)^2 = 25$ or $x^2 - 4x + 4 + (3x)^2 - 2(3x) + 1 = 25$		
		• ² express in standard quadratic form	• ² $10x^2 - 10x - 20 = 0$		
		• ³ factorise	• ³ $10(x-2)(x+1)=0$		
		• ⁴ find x coordinates	• ⁴ $x = 2$ $x = -1$		
		• ⁵ find y coordinates	• ⁵ $y = 6$ $y = -3$	5	
Note	es:				
 If a candidate arrives at an equation which is not a quadratic at •² stage, then •³, •⁴ and •⁵ are not available At •³ do not penalise candidates who fail to extract the common factor or who have divided the quadratic equation by 10. •³ is available for substituting correctly into the quadratic formula. •⁴ and •⁵ may be marked either horizontally or vertically. For candidates who identify both solutions by inspection, full marks may be awarded provided they justify that their points lie on both the line and the circle. Candidates who identify both solutions, but justify only one gain 2 out of 5. 					
Com	monly Obs	erved Responses:			
$(x-10x^2$	didate A $(2)^{2} + (3x - 1)^{2} +$	$(1)^{2} = 25 \qquad \bullet^{1} \checkmark \qquad $	Candidate B Candidates who substitute into the circle equation only 1 \checkmark 2 \checkmark 3 \checkmark 4 \checkmark Fub $x = 2$ $y^2 - 2y - 24 = 0$ $y^2 - 2y - 15 = 0$ (y - 6)(y + 4) = 0 (y + 3)(y - 5) = 0	le	
y = 0	6 y = 9		y = 6 or y = -3 or y = -3 (2,6) (-1,-3) • ⁵ ×		

Q	Question		Generic scheme		Illustrative scheme	Max mark	
4.	(a)			Method 1	Method 1		
			• ¹ identify	common factor	• $3(x^2 + 8x$ stated or implied by • ²		
			• ² complete	e the square	• ² $3(x+4)^2$		
			• ³ process f required	for <i>c</i> and write in form	• $3(x+4)^2+2$	3	
				Method 2	Method 2		
			• ¹ expand o	completed square for	$\bullet^1 ax^2 + 2abx + ab^2 + c$		
			• ² equate c	coefficients	• ² $a=3$, $2ab=24$, $ab^2+c=50$		
			• ³ process t in requir	for b and c and write ed form	$e^{3} 3(x+4)^{2}+2$	3	
Note	es:						
2. •	 3(x+4)²+2 with no working gains •¹ and •² only; however, see Candidate G. •³ is only available for a calculation involving both multiplication and subtraction of integers. 						
			erved Respo	onses:			
Candidate A					Candidate B		
$3 x^2$	² + 8 <i>x</i>	$+\frac{50}{3}$		•1 🗸	$3x^2 + 24x + 50 = 3(x+8)^2 - 64 + 50 \bullet^1$	x • ² x	
	$3\left(x^{2}+8x+16-16+\frac{50}{3}\right)$				$=3(x+8)^2-14$ • ³	√2	
			3) • ² ^	further working is required			
Can	Candidate C				Candidate D		
ax^2 -	+ 2 abx	$a + ab^2$	+ <i>c</i>	• ¹ 🗸	$3((x^2+24x)+50)$ • ¹	×	
	$a=3, 2ab=24, b^2+c=50$ • ² × a=3, b=4, c=34			• ² ¥		√ 1	
	$(+4)^2$,	— J T	● ³ √ 1		√ 1	

Question	Generic scheme	Illustrative scheme Max mark		
a=3, 2ab=24 b=4, c=2 \bullet^3 is awa working	$x^{2} + 2abx + ab^{2} + c \qquad \bullet^{1} \checkmark$ $ab^{2} + c = 50 \qquad \bullet^{2} \checkmark$ $\bullet^{3} \checkmark$ arded as all relates to relates to relates to relates to	Candidate F $ax^2 + 2abx + ab^2 + c$ $\bullet^1 \checkmark$ $a = 3, \ 2ab = 24, \ ab^2 + c = 50$ $\bullet^2 \checkmark$ $b = 4, \ c = 2$ $\bullet^3 \times$ $\bullet^3 \text{ is lost as no}$ reference is made to completed square form		
	3x+16)+2 24x+48+2 24x+50	Candidate H $3x^2 + 24x + 50$ $= 3(x+4)^2 - 16 + 50$ $\bullet^1 \checkmark \bullet^2 \checkmark$ $= 3(x+4)^2 + 34$ $\bullet^3 \checkmark$		
Award 3/3				

Question		on	Generic scheme	Illustrative scheme	Max mark			
4.	(b)		• ⁴ differentiate two terms	• $3x^2 + 24x$				
			• ⁵ complete differentiation	• ⁵ +50	2			
Note	Notes:							
3. • ⁴ is awarded for any two of the following three terms: $3x^2$, $+24x$, $+50$								
Commonly Observed Responses:								

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark	
4.	(c)		Method 1	Method 1		
			• ⁶ link with (a) and identify sign of $(x+4)^2$	• ⁶ $f'(x) = 3(x+4)^2 + 2$ and $(x+4)^2 \ge 0 \forall x$		
			• ⁷ communicate reason	• ⁷ $\therefore 3(x+4)^2 + 2 > 0 \Rightarrow$ always strictly increasing		
			Method 2	Method 2		
			• ⁶ identify minimum value of $f'(x)$	• ⁶ eg minimum value =2 or annotated sketch		
			• ⁷ communicate reason	• ⁷ $2 > 0 \therefore (f'(x) > 0) \Rightarrow$ always strictly increasing	2	
Note	<u>.</u>				2	
		pena	lise $(x+4)^2 > 0$ or the omission of	$f'(x)$ at \bullet^6 in Method 1		
5. R 6. W 51 7. A 51	espor vailat /here trictly t • ⁶ c tatem vailat	nses ir ole. error incre ommu nents ole.	In part (c) must be consistent with version of a candidate easing, only \bullet^6 is available. Unication should be explicitly in terms such as "(something) ² \geq 0", "some	working in parts (a) and (b) for \bullet^6 and considering a function which is not alter rms of the given function. Do not accest thing squared ≥ 0 ". However, \bullet^7 is st	ways	
			served Responses:			
	didate $r = 3$			Candidate J		
- ($f'(x) = 3(x+4)^{2} + 2$ 3(x+4) ² +2>0 \Rightarrow strictly increasing.			Since $3x^2 + 24x + 50 = 3(x+4)^2 + \frac{166}{50}$		
	Award 1 out of 2			and $(x+4)^2$ is >0 for all x then		
				$3(x+4)^2 + \frac{166}{50} > 0$ for all x.		
			H V	Hence the curve is strictly increasing values of x . •6 \checkmark •7 \checkmark 1	g for all	

Q	Question		Generic scheme	Illustrative scheme	Max mark		
5.	(a)		• ¹ identify pathway	• ¹ $\overrightarrow{PR} + \overrightarrow{RQ}$ stated or implied by • ²			
			• ² state \overrightarrow{PQ}	• ² $-3i-4j+5k$	2		
Not	Notes:						

1. Award \bullet^1 (9i+5j+2k)+(-12i-9j+3k).

2. Candidates who choose to work with column vectors and leave their answer in the form $\begin{pmatrix} -3 \end{pmatrix}$

 $\begin{bmatrix} -4 \\ 5 \end{bmatrix}$ cannot gain \bullet^2 .

- 3. \bullet^2 is not available for simply adding or subtracting vectors within an invalid strategy.
- 4. Where candidates choose specific points consistent with the given vectors, only \bullet^1 and \bullet^4 are available. However, should the statement 'without loss of generality' precede the selected points then marks \bullet^1 , \bullet^2 , \bullet^3 and \bullet^4 are all available.

Commonly Observed Responses:

Q	Question		Generic scheme	Illustrative scheme	Max mark		
5.	(b)		• ³ interpret ratio	• ³ $\frac{2}{3}$ or $\frac{1}{3}$			
			• ⁴ identify pathway and demonstrate result	• ⁴ $\overrightarrow{PR} + \frac{2}{3}\overrightarrow{RQ}$ or $\overrightarrow{PQ} + \frac{1}{3}\overrightarrow{QR}$ leading			
				to i-j+4 k	2		
Note	es:						
	5. This is a 'show that' question. Candidates who choose to work with column vectors must write their final answer in the required form to gain \bullet^4 . $\begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$ does not gain \bullet^4 .						
6.	6. Beware of candidates who fudge their working between \bullet^3 and \bullet^4 .						

Question	Generic scheme		Illustrative scheme	Max mark
Commonly Obse	erved Responses:			
Candidate A - I formula $\overrightarrow{PS} = \frac{n\overrightarrow{PQ} + m\overrightarrow{PR}}{m+n}$ $\overrightarrow{PS} = \frac{2\overrightarrow{PQ} + \overrightarrow{PR}}{3} \bullet$ $2 \begin{pmatrix} -3 \\ -4 \\ 5 \end{pmatrix} + \begin{pmatrix} 9 \\ 5 \\ 2 \end{pmatrix}$ $\overrightarrow{PS} = \frac{2 \begin{pmatrix} -3 \\ -4 \\ 5 \end{pmatrix}}{3} + \begin{pmatrix} 9 \\ 5 \\ 2 \end{pmatrix}$ $= \begin{pmatrix} -2 \\ -8 \\ 3 \\ 10 \\ 3 \end{pmatrix} + \begin{pmatrix} 3 \\ 5 \\ 3 \\ 2 \\ 3 \end{pmatrix}$ $= \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}$ $\overrightarrow{PS} = \mathbf{i} - \mathbf{j} + 4\mathbf{k} \bullet^{4}$		origi 2QS 3s = 2 3s = 2		as the

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
5.	(c)		Method 1	Method 1	
			● ⁵ evaluate PQ.PS	• ⁵ $\overrightarrow{PQ}.\overrightarrow{PS} = 21$	
			• ⁶ evaluate \overrightarrow{PQ}	• ⁶ $\left \overline{PQ} \right = \sqrt{50}$ • ⁷ $\left \overline{PS} \right = \sqrt{18}$	
			• ⁷ evaluate \overline{PS}	• ⁷ $\left \overrightarrow{PS} \right = \sqrt{18}$	
			• ⁸ use scalar product	• ⁸ cos QPS = $\frac{21}{\sqrt{50} \times \sqrt{18}}$	
			• ⁹ calculate angle	•9 $45 \cdot 6^{\circ}$ or $0 \cdot 795$ radians	5
			Method 2	Method 2	
			• ⁵ evaluate \overline{QS}	• ⁵ $\left \overrightarrow{QS} \right = \sqrt{26}$	
			• ⁶ evaluate \overrightarrow{PQ}	• ⁵ $\left \overline{QS} \right = \sqrt{26}$ • ⁶ $\left \overline{PQ} \right = \sqrt{50}$	
			\bullet^7 evaluate \overline{PS}	• ⁷ $\left \overrightarrow{PS} \right = \sqrt{18}$	
			• ⁸ use cosine rule	• ⁸ cosQPS = $\frac{(\sqrt{50})^2 + (\sqrt{18})^2 - (\sqrt{26})^2}{2 \times \sqrt{50} \times \sqrt{18}}$	
Note			• ⁹ calculate angle	● ⁹ 45·6° or 0·795 radians	5

7. For candidates who use \overrightarrow{PS} not equal to $\mathbf{i} - \mathbf{j} + 4\mathbf{k} \bullet^5$ is not available in Method 1 or \bullet^7 in Method 2.

- 8. Do not penalise candidates who treat negative signs with a lack of rigour when calculating a magnitude. However, $\sqrt{1^2 1^2 + 4^2}$ leading to $\sqrt{16}$ indicates an invalid method for calculating the magnitude. No mark can be awarded for any magnitude arrived at using an invalid method.
- 9. •⁸ is not available to candidates who simply state the formula $\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$.

However,
$$\cos\theta = \frac{\overrightarrow{PQ}.\overrightarrow{PS}}{|\overrightarrow{PQ}| \times |\overrightarrow{PS}|}$$
 or $\cos\theta = \frac{21}{\sqrt{50} \times \sqrt{18}}$ is acceptable. Similarly for Method 2.

- 10. Accept answers which round to 46° or 0.8 radians.
- 11. Do not penalise the omission or incorrect use of units.
- 12. \bullet^9 is only available as a result of using a valid strategy.
- 13. \bullet^9 is only available for a single angle.
- 14. For a correct answer with no working award 0/5.

Question	Generic scheme	Illustrative scheme Max mark
Commonly Obs	erved Responses:	
Candidate C - C	Calculating wrong angle	Candidate D- Calculating wrong angle
$\overrightarrow{QP}.\overrightarrow{QS} = 29$	• ⁵ x	$\overrightarrow{PS}.\overrightarrow{QP} = -21$ $\bullet^5 \times$
$\left \overrightarrow{\text{QP}} \right = \sqrt{50}$	● ⁶ <mark>√1</mark>	$\left \overline{\text{QP}}\right = \sqrt{50}$ $\bullet^6 \checkmark$
$\left \overline{\text{QS}} \right = \sqrt{26}$		$\left \overline{PS}\right = \sqrt{18}$ $\bullet^7 \checkmark$
$\cos P\hat{Q}S = \frac{29}{\sqrt{50} \times \sqrt{50}}$	• ⁸ √ 1	$\cos \theta = \frac{-21}{\sqrt{50} \times \sqrt{18}} \qquad \bullet^8 \checkmark 1$ $\theta = 134 \cdot 4 \qquad \bullet^9 \checkmark \text{ strategy}$
	● ⁹ ★ strategy incomplete	$\theta = 134 \cdot 4$ •9 * strategy incomplete
	who continue, and use the evaluate the required angle, are available.	For candidates who continue, and use the angle found to evaluate the required angle, then all marks are available.
Candidate E		Candidate F
From (a) $\overrightarrow{PQ} = -$	21i-14j+k	From (a) $\overrightarrow{PQ} = 21i + 14j - k$
$\overrightarrow{PQ}.\overrightarrow{PS} = -3$	● ⁵ √ 1	$\overrightarrow{PQ}.\overrightarrow{PS} = 3$ $\bullet^5 \checkmark 1$
$\overrightarrow{PQ}.\overrightarrow{PS} = -3$ $\left \overrightarrow{PQ}\right = \sqrt{638}$ $\left \overrightarrow{PS}\right = \sqrt{18}$	● ⁶ <mark>√1</mark>	$\left \overline{PQ}\right = \sqrt{638}$ $\bullet^{6} \checkmark 1$
$\left \overrightarrow{PS} \right = \sqrt{18}$	•7 🗸	$\overrightarrow{PQ}.\overrightarrow{PS} = 3 \qquad \bullet^{5} \checkmark 1$ $\left \overrightarrow{PQ}\right = \sqrt{638} \qquad \bullet^{6} \checkmark 1$ $\left \overrightarrow{PS}\right = \sqrt{18} \qquad \bullet^{7} \checkmark$
$\cos Q\hat{P}S = \frac{-3}{\sqrt{638}} \times$		$\cos Q\hat{P}S = \frac{3}{\sqrt{638} \times \sqrt{18}} \bullet^8 \checkmark 1$
QPS = 91⋅6	• ⁹ 1	$Q\hat{P}S = 88 \cdot 4$ •9 $\checkmark 1$
Candidate G		
From (b) $\overrightarrow{PS} = -4$	4i-3j+k	
$\overrightarrow{PQ}.\overrightarrow{PS} = 3$	• ⁵ ×	
	•6 🗸	
$\left \overrightarrow{PS} \right = \sqrt{26}$	• ⁷ 1	
$\begin{vmatrix} \overline{PS} = \sqrt{26} \\ \cos Q\hat{PS} = \frac{3}{\sqrt{50} \times \sqrt{20}} \end{vmatrix}$	• ⁸ √ 1	
$Q\hat{P}S = 85 \cdot 2$	• ⁹ √ 1	

Q	uestion	Generic scheme	Illustrative scheme	Max mark
6.		• ¹ substitute appropriate double angle formula	• ¹ $5\sin x - 4 = 2(1 - 2\sin^2 x)$	
		• ² express in standard quadratic form	• ² $4\sin^2 x + 5\sin x - 6 = 0$	
		• ³ factorise	• ³ $(4\sin x - 3)(\sin x + 2)$	
		• ⁴ solve for $\sin x^{\circ}$	• ⁴ $\sin x = \frac{3}{4}$, $\sin x = -2$	
		• ⁵ solve for x	• ⁵ $x = 0.848, 2.29, \sin x = -2$	5
Note	es:			

1. •¹ is not available for simply stating $\cos 2x = 1 - 2\sin^2 x$ with no further working.

2. In the event of $\cos^2 x^\circ - \sin^2 x^\circ$ or $2\cos^2 x^\circ - 1$ being substituted for $\cos 2x$, \bullet^1 cannot be awarded until the equation reduces to a quadratic in $\sin x^\circ$.

3. Substituting $1-2\sin^2 A$ or $1-2\sin^2 \alpha$ for $\cos 2x$ at \bullet^1 stage should be treated as bad form provided the equation is written in terms of x at \bullet^2 stage. Otherwise, \bullet^1 is not available.

- 4. '=0' must appear by \bullet^3 stage for \bullet^2 to be awarded. However, for candidates using the quadratic formula to solve the equation, '=0' must appear at \bullet^2 stage for \bullet^2 to be awarded.
- 5. $5\sin x + 4\sin^2 x 6 = 0$ does not gain \bullet^2 unless \bullet^3 is awarded.

6.
$$\sin x = \frac{-5 \pm \sqrt{121}}{8}$$
 gains •³.

- 7. Candidates may express the equation obtained at \bullet^2 in the form $4s^2+5s-6=0$ or $4x^2+5x-6=0$. In these cases, award \bullet^3 for (4s-3)(s+2)=0 or (4x-3)(x+2)=0. However, \bullet^4 is only available if $\sin x$ appears explicitly at this stage.
- 8. \bullet^4 and \bullet^5 are only available as a consequence of solving a quadratic equation.
- 9. •³, •⁴ and •⁵ are not available for any attempt to solve a quadratic equation written in the form $ax^2 + bx = c$.
- 10. ●⁵ is not available to candidates who work in degrees and do not convert their solutions into radian measure.
- 11. Accept answers which round to 0.85 and 2.3 at $\bullet^5 \text{ eg} \frac{49\pi}{180}, \frac{131\pi}{180}$
- 12. Answers written as decimals should be rounded to no fewer than 2 significant figures.
- 13. Do not penalise additional solutions at \bullet^5 .

Question	Generic s	scheme	Illustrative schem	ne Max mark
Commonly Obs Candidate A	served Responses:		Candidate B	
• ¹ • • ² • (4s-3)(s+2) = $s = \frac{3}{4}, s = -2$ x = 0.848, 2.22	•4 ¥		• ¹ $4\sin^2 x + 5\sin x - 6 = 0$ $9\sin x - 6 = 0$ $\sin x = \frac{2}{3}$ x = 0.730, 2.41	$ \begin{array}{c} \bullet^{2} \checkmark \\ \bullet^{3} \varkappa \\ \bullet^{4} \checkmark \\ \bullet^{5} \checkmark \\ \end{array} $
Candidate C $5\sin x - 4 = 2(1 + 3) + 5\sin x$ $\sin x(4\sin x + 5) + 5\sin x$ $\sin x = 6, 4\sin x$ no solution, sin	x = 6 x = 6 x + 5 = 6 $x = \frac{1}{4}$	• ¹ ✓ • ² ✓ 2 • ³ ✓ 2 • ⁴ ★	Candidate D $5\sin x - 4 = 2(1 - 2\sin^2 x)$ $4\sin^2 x + 5\sin x - 6 = 0$ $4\sin^2 x + 5\sin x = 6$ $\sin x (4\sin x + 5) = 6$ $\sin x = 6, 4\sin x + 5 = 6$ no solution, $\sin x = \frac{1}{4}$	• ¹ ✓ • ² ✓ • ³ ✓ <u>2</u> • ⁴ ≭
x = 0.253, 2.8	9	• ⁵ ×	x = 0.253, 2.89	● ⁵ ≭
	reading $\cos 2x$ as $\cos^2 x$			
$5\sin x - 4 = 2\cos x - 4 = 2(1)$ $2\sin^2 x + 5\sin x - 4 = 2(1)$ $\sin x = \frac{-5 \pm \sqrt{7}}{4}$ $\sin x = 0.886,$ $x = 1.08, 2.05$	$(-\sin^2 x)$ (-6 = 0) (-6 = 0)	• ¹ x • ² $\sqrt{1}$ • ³ $\sqrt{1}$ • ⁴ $\sqrt{1}$ • ⁵ $\sqrt{1}$		

Q	uesti	on	Generic scheme		Illustrative scheme	Max mark
7.	(a)		• ¹ write in differentiable form	•1	$\dots -2x^{\frac{3}{2}}$ stated or implied	
			• ² differentiate one term	•2	$\frac{dy}{dx} = 6 \text{ or } \frac{dy}{dx} = 3x^{\frac{1}{2}}$	
			• ³ complete differentiation and equate to zero	• 3	$\dots -3x^{\frac{1}{2}} = 0$ or $6\dots = 0$	
			• ⁴ solve for x	•4	<i>x</i> = 4	4
3. F			tes who integrate one or other of t served Responses:	the te	rms • ⁴ is unavailable.	
			•	Candi	date B - integrating the second t	orm
	6x-2	3	• ¹ ✓	y = 6	$x-2x^{\frac{3}{2}}$ $\bullet^1\checkmark$.crm
$\frac{dy}{l} =$	=6-3	$3x^{\frac{5}{2}}$			$5 - \frac{4}{5}x^{\frac{5}{2}} \qquad \bullet^2 \checkmark$	
	$3x^{\frac{5}{2}} =$		• ³ ×	$6 - \frac{4}{5}$	$x^{\frac{5}{2}} = 0$ $\bullet^3 x$	
<i>x</i> = ²	1.32		• ⁴ 1	x = 2	•24 • ⁴ x	

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark		
7.	(b)		 •⁵ evaluate y at stationary point •⁶ consider value of y at end points •⁷ state greatest and least values 	 •⁵ 8 •⁶ 4 and 0 •⁷ greatest 8, least 0 stated explicitly 	3		
Notes:							
	4. The only valid approach to finding the stationary point is via differentiation. A numerical approach can only gain \bullet^6 .						

- 5. \bullet^7 is not available to candidates who do not consider both end points.
- 6. Vertical marking is not applicable to \bullet^6 and \bullet^7 .
- 7. Ignore any nature table which may appear in a candidate's solution; however, the appearance of (4,8) at a nature table is sufficient for \bullet^5 .
- 8. Greatest (4,8); least (9,0) does not gain \bullet^7 .
- 9. •⁵ and •⁷ are not available for evaluating y at a value of x, obtained at •⁴ stage, which lies outwith the interval $1 \le x \le 9$.
- 10. For candidates who **only** evaluate the derivative, \bullet^5 , \bullet^6 and \bullet^7 are not available.

Commonly Observed Responses:

Q	Question		Generic scheme	Illustrative scheme	Max mark
8.	(a)		 find expression for u₁ find expression for u₂ and express in the correct form 	• ¹ $5k - 20$ • ² $u_2 = k(5k - 20) - 20$ leading to $u_2 = 5k^2 - 20k - 20$	
Note		y Obs	served Responses:		2

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
8.	(b)	(b) • ³ interpret information		• ³ $5k^2 - 20k - 20 < 5$	
			 ⁴ express inequality in standard quadratic form 	• $5k^2 - 20k - 25 < 0$	
			• ⁵ determine zeros of quadratic expression	● ⁵ –1, 5	
			• ⁶ state range with justification	• ⁶ $-1 < k < 5$ with eg sketch or table of signs	4
Note	es:				

1. Candidates who work with an equation from the outset lose \bullet^3 and \bullet^4 . However, \bullet^5 and \bullet^6 are still available.

2. At \bullet^5 do not penalise candidates who fail to extract the common factor or who have divided the quadratic inequation by 5.

- 3. \bullet^4 and \bullet^5 are only available to candidates who arrive at a quadratic expression at \bullet^3 .
- 4. At •⁶ accept "k > -1 and k < 5" or "k > -1, k < 5" together with the required justification.
- 5. For a trial and error approach award 0/4.

Commonly Observed Responses:

Question		on	Generic scheme	Illustrative scheme	Max mark
9.			Method 1	Method 1	
			• ¹ state linear equation	• $\log_2 y = \frac{1}{4} \log_2 x + 3$	
			• ² introduce logs	• ² $\log_2 y = \frac{1}{4} \log_2 x + 3 \log_2 2$	
			• ³ use laws of logs	• $\log_2 y = \log_2 x^{\frac{1}{4}} + \log_2 2^3$	
			• ⁴ use laws of logs	• $\log_2 y = \log_2 2^3 x^{\frac{1}{4}}$	
			• ⁵ state k and n	• ⁵ $k = 8, n = \frac{1}{4}$ or $y = 8x^{\frac{1}{4}}$	5
			Method 2	Method 2	
			• ¹ state linear equation	• $\log_2 y = \frac{1}{4} \log_2 x + 3$	
			• ² use laws of logs	• ² $\log_2 y = \log_2 x^{\frac{1}{4}} + 3$	
			\bullet^3 use laws of logs	• $\log_2 \frac{y}{x^{\frac{1}{4}}} = 3$	
			• ⁴ use laws of logs	• $\frac{y}{x^{\frac{1}{4}}} = 2^3$	
			• ⁵ state k and n	• ⁵ $k = 8, n = \frac{1}{4}$ or $y = 8x^{\frac{1}{4}}$	5

Qu	estion	Generic Scheme	Illustrative Scheme	Max Mark		
		Method 3	Method 3			
			The equations at \bullet^1 , \bullet^2 and \bullet^3			
			must be stated explicitly.			
		• ¹ introduce logs to $y = kx^n$	• $\log_2 y = \log_2 kx^n$			
		• ² use laws of logs	• ² $\log_2 y = n \log_2 x + \log_2 k$			
		• ³ interpret intercept	• ³ $\log_2 k = 3$			
		• ⁴ use laws of logs	•4 $k = 8$			
		• ⁵ interpret gradient	• ⁵ $n = \frac{1}{4}$			
				5		
		Method 4	Method 4			
		• ¹ interpret point on log graph	• $\log_2 x = -12$ and $\log_2 y = 0$			
		• ² convert from log to exp. form	• ² $x = 2^{-12}$ and $y = 2^{0}$			
		• ³ interpret point and convert	• ³ $\log_2 x = 0$, $\log_2 y = 3$ $x = 1$, $y = 2^3$			
		• ⁴ substitute into $y = kx^n$ and evaluate k	• ⁴ $2^3 = k \times 1^n \Longrightarrow k = 8$			
		• ⁵ substitute other point into $y = kx^n$ and evaluate n	• ⁵ $2^0 = 2^3 \times 2^{-12n}$ $\Rightarrow 3 - 12n = 0$			
			$\Rightarrow n = \frac{1}{4}$	5		
Notes						
ma 2. Tr	 Markers must not pick and choose between methods. Identify the method which best matches the candidates approach. Treat the omission of base 2 as bad form at •¹ and •³ in Method 1, at •¹ and •² for Method 2 and Method 3, and at •¹ in Method 4. 					
		'gradient = $\frac{1}{4}$ ' does not gain \bullet^5 in Me	ethod 3.			
4. Ac	4. Accept 8 in lieu of 2^3 throughout.					

4. Accept 8 in lieu of 2' throughout.
5. In Method 4 candidates may use (0,3) for •¹ and •² followed by (-12,0) for •³.

Question	Generic scheme	Illustrative scheme Max mark
Commonly Obs	erved Responses:	
Candidate A		Candidate B
With no workin Method 3:	g.	With no working. Method 3:
k = 8	•4 🗸	<i>n</i> = 8 •4 ×
$n=\frac{1}{4}$	•5 🗸	$k = \frac{1}{4} \qquad \qquad \bullet^5 x$
Award 2/5		Award 0/5
Candidate C		Candidate D
Method 3:		Method 2:
$\log_2 k = 3$	•3 🗸	$\log_2 y = \frac{1}{4} \log_2 x + 3 \qquad \bullet^1 \checkmark$
k = 8	•4 ✓	$\log_2 y = \log_2 x^{\frac{1}{4}} + 3 \qquad \bullet^2 \checkmark$
$n=\frac{1}{4}$	●5 ✓	$y = x^{\frac{1}{4}} + 3 \qquad \qquad \bullet^3 \mathbf{x} \bullet^4 \mathbf{x}$
		$k = 1, n = \frac{1}{4}$ $\bullet^5 $
Award 3/5		Award 2/5
Candidate E		
Method 2:		
$y = \frac{1}{4}x + 3$		
$\log_2 y = \frac{1}{4}\log_2$	$x+3$ $\bullet^1 \checkmark$	
$\log_2 y = \log_2 x^{\frac{1}{4}}$	+3 ● ² ✓	
$\frac{y}{x^{\frac{1}{4}}} = 3$	• ³ • ⁴ x	
$y = 3x^{\frac{1}{4}}$	● ⁵ √ 1	
Award 3/5		

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark		
10.	(a)		Method 1 • ¹ calculate m_{AB} • ² calculate m_{BC} • ³ interpret result and state conclusion	Method 1 • $m_{AB} = \frac{3}{9} = \frac{1}{3}$ see Note 1 • $m_{BC} = \frac{5}{15} = \frac{1}{3}$ • $\dots \Rightarrow AB$ and BC are parallel (common direction), B is a common point, hence A, B and C are collinear.	3		
			Method 2 •1 calculate an appropriate vector e.g. \overline{AB} •2 calculate a second vector e.g. \overline{BC} and compare •3 interpret result and state conclusion	Method 2 •1 $\overrightarrow{AB} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$ see Note 1 •2 $\overrightarrow{BC} = \begin{pmatrix} 15 \\ 5 \end{pmatrix}$ \therefore $\overrightarrow{AB} = \frac{3}{5}\overrightarrow{BC}$ •3 $\dots \Rightarrow$ AB and BC are parallel (common direction), B is a common point, hence A, B and C are collinear.	3		
Note			Method 3 • ¹ calculate m _{AB} • ² find equation of line and substitute point • ³ communication	Method 3 • $m_{AB} = \frac{3}{9} = \frac{1}{3}$ • $2 \text{ eg, } y - 1 = \frac{1}{3}(x-2) \text{ leading to}$ $6 - 1 = \frac{1}{3}(17-2)$ • $3 \text{ since C lies on line A, B and C are collinear}$			
1. A 2. •	 •³ can only be awarded if a candidate has stated "parallel", "common point" and "collinear". 						

Question		ic scheme	Illus	trative scheme	Max mark
Commonly Obs Candidate A $m_{AB} = \frac{3}{9} = \frac{1}{3}$ $m_{BC} = \frac{5}{15}$ \Rightarrow AB and BC a B is a common hence A, B and are collinear.	point,	Candidate B $\begin{pmatrix} 9\\ 3 \end{pmatrix}$ $\begin{pmatrix} 15\\ 5 \end{pmatrix}$ \therefore $\overrightarrow{AB} = \frac{5}{3}\overrightarrow{BC}$ \Rightarrow AB and BC are parts B is a common point hence A, B and C are collinear.	arallel ,	$\overrightarrow{BC} = \begin{pmatrix} 15\\5 \end{pmatrix} = 5 \begin{pmatrix} 3\\1 \end{pmatrix} \text{ and }$ $\begin{pmatrix} 9\\3 \end{pmatrix} = 3 \begin{pmatrix} 3\\1 \end{pmatrix} \bullet$ $\therefore \overrightarrow{AB} = \frac{5}{3} \overrightarrow{BC} ignore wor subsequent to correct statement at •2. ⇒ AB and BC are paral B is a common point, hence A, B and C$	king

Q	Question		Generic scheme			Illustrative schem	e	Max mark
10.	(b)		 ⁴ find radius ⁵ determine an approximately 	opropriate rati		$6\sqrt{10}$ e.g. 2:3 or $\frac{2}{5}$ (using B a	and C)	
Note			 determine an ap ⁶ find centre ⁷ state equation of 		•6	or 3:5 or $\frac{8}{5}$ (using A (8,3) $(x-8)^2 + (y-3)^2 = 360$		4
a i 5. [availal f an ir Do not	ble. N ncorre : acce	Where an incorrect ect centre or an incorrect opt $(6\sqrt{10})^2$ for \bullet^7 .	centre or radiu	us fro	● ⁵ is lost, ● ⁶ is awarded m working then ● ⁷ is ava s ex nihilo ● ⁷ is not avai	ailable. H	
			erved Responses:					
-	didate				-	date E	4	
	us = e	•				$s = 3\sqrt{10}$	• ⁴	*
	•		midpoint of BC 5, 3·5)		-	rets D as midpoint of AG e D is(5, 2)	• ⁶	× ✓2
(<i>x</i> -	$(9.5)^2$	+(y-	$(-3\cdot 5)^2 = 360$	$y^{2} + (y-2)^{2} = 90$	•7	√ 1		
Cane	didate	e F			Candi	date G		
Radi	us = 🔨	/10		• ⁴ x	Radiu	$6 = 6\sqrt{10}$	• ⁴	√
	•		midpoint of AC	• ⁵ ≭ • ⁶ √ 2	$\frac{CD}{BD} = \frac{1}{2}$	$\frac{3}{2}$ or simply $\frac{3}{2}$	• ⁵	~
				Centre	e D is(11, 4)	•6	ĸ	
(1	<i>-</i>) '((, ,	,		(<i>x</i> -1'	$(y^{2} + (y^{2} - 4)^{2}) = 360$	•7	√ 1

Qı	uestion	Generic scheme	Illustrative scheme	Max mark
11.	(a)	Method 1 • 1 substitute for $\sin 2x$ • 2 simplify and factorise	Method 1 •1 $\frac{2\sin x \cos x}{2\cos x} - \sin x \cos^2 x$ stated explicitly as above or in a simplified form of the above •2 $\sin x(1-\cos^2 x)$ •3 $\sin x \times \sin^2 x$ leading to	
		• ³ substitute for $1 - \cos^2 x$ and simplify	$\sin^3 x$	3
		Method 2 • ¹ substitute for $\sin 2x$	Method 2 •1 $\frac{2\sin x \cos x}{2\cos x} - \sin x \cos^2 x$ stated explicitly as above or in a simplified form of the above	
		• ² simplify and substitute for $\cos^2 x$	• ² $\sin x - \sin x (1 - \sin^2 x)$ • ³ $\sin x - \sin x + \sin^3 x$ leading to	
		• ³ expand and simplify	$\sin^3 x$	3
a 3. • 4. T 5. C	warded ³ is not reat mu Aarking On the a	if there is an error at • ² . available to candidates who work th Itiple attempts which are not score Principle (r).	d \bullet^2 in the same line of working \bullet^1 may shroughout with A in place of x . d out as different strategies, and apply lable mark is lost; however, any further	General
Com	monly (Observed Responses:		
Cano	lidate A		Candidate B	
$\frac{2\sin^2}{2}$	$\frac{1 x \cos x}{\cos x}$	$-\sin x \cos^2 x = \sin^3 x \bullet^1 \checkmark$	$LHS = \frac{\sin 2x}{2\cos x} - \sin x \cos^2 x$	
sin x	$x - \sin x d$	$\cos^2 x = \sin^3 x \qquad \bullet^2 \land$	=	$\frac{1 x \cos x}{\cos x}$
1-c	$\cos^2 x = s$	$\sin^2 x$ $\bullet^3 \mathbf{x}$	$=\sin x$	
In p with	both sid	<i>x</i> ne identity, candidates must work les independently ie in each line of LHS must be equivalent to the line	$\sin x - \sin x \cos^2 x \qquad \bullet^1 \checkmark$ $\sin x (1 - \cos^2 x) \qquad \bullet^2 \checkmark$	

Question	Generic scheme	Illustrative scheme	Max mark
11. (b)	 •⁴ know to differentiate sin³ x •⁵ start to differentiate •⁶ complete differentiation 	• ⁴ $\frac{d}{dx}(\sin^3 x)$ • ⁵ $3\sin^2 x$ • ⁶ ×cos x	
Notes:			3
Commonly O	bserved Responses:		

[END OF MARKING INSTRUCTIONS]