

2019 Mathematics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2019

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

General marking principles for Advanced Higher Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example 6 x 6 = 12, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) overleaf.

(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

You must choose whichever method benefits the candidate, **not** a combination of both.

- (j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
 - $\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$ $\frac{43}{1}$ must be simplified to 43 $\frac{15}{0\cdot 3}$ must be simplified to 50 $\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$ $\sqrt{64}$ must be simplified to 8*

*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3} + 2x^{2} + 3x + 2)(2x + 1)$ written as $(x^{3} + 2x^{2} + 3x + 2) \times 2x + 1$ $= 2x^{4} + 5x^{3} + 8x^{2} + 7x + 2$ gains full credit

• repeated error within a guestion, but not between guestions or papers

- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

For example:

In this case, award 3 marks.

Marking instructions for each question

Question		n	Generic scheme	Illustrative scheme	Max mark
1.	(a)		• ¹ evidence of product rule with one term correct ^{1,4}	• ¹ $6x^5 \cot 5x \pm x^6 ()$ OR $-5x^6 \csc^2 5x + () \cot 5x$	2
			• ² complete differentiation ^{1,2,3}	• ² $6x^5 \cot 5x - 5x^6 \operatorname{cosec}^2 5x$	
Note	es: or can	didate	es who produce a single term only. • ¹ and	$d \bullet^2$ are not available.	
2. A	ward • $x^5 \cot x^5$	e^2 for $15x-5e^2$	final answers such as: $6x^5 \cot 5x + x^6 (-5) \cos^2 5x \cdot x^6$.	$\csc^{2}5x$, $6x^{5}\cot 5x - x^{6}5\csc^{2}5x$ at	nd
3. D ai	o not and $6x^{5}$	award ⁵ cot 5.	• ² for final answers such as: $6x^{3} \cot 5x + x - 5 \operatorname{cosec}^{2} 5x x^{6}$.	$-5x^\circ \operatorname{cosec}^2 5x$, $6x^\circ \cot 5x + x^\circ - 5\cos 6x$	$x^2 5x$
4. W	/here a	a cano	didate equates $f(x)$ to $f'(x)$, \bullet^1 is not	available (see COR A.)	
Com	monly	Obse	erved Responses:		
A. f	f(x) =	$x^6 \cot$	t5 <i>x</i>		
	=	$6x^5$ co	$\operatorname{bt} 5x - 5x^6 \operatorname{cosec}^2 5x$	Award \bullet^2 only	
B. <i>x</i>	⁶ cot 5.	$x = x^6$	$\tan^{-1}(5x)$		
f	f'(x) =	= 6 x ⁵ ta	$an^{-1}(5x) + \frac{5x^3}{1+(5x)^2}$	Award • ² only	
C. <i>f</i>	f(x) =	$\frac{x^6}{\tan 5x}$	_ x		
f	f'(x) =	$\frac{6x^5}{1}$	$\frac{\operatorname{an} 5x - 5x^{6} \sec^{2} 5x}{\left(\tan 5x\right)^{2}}$	Award \bullet^1 and \bullet^2	
D. <i>f</i>	f(x) =	x^{6} (ta	$n 5x)^{-1}$		
f	f'(x) =	= 6 x ⁵ ($(\tan 5x)^{-1} - x^6 (\tan 5x)^{-2} 5 \sec^2 5x$	Award \bullet^1 and \bullet^2	

Question		on	Generic scheme	Illustrative scheme	Max mark
1.	(b)		• ³ evidence use of quotient rule with denominator and one term of numerator correct	• ³ $\frac{6x^2(x^3-4)}{(x^3-4)^2}$ OR $\frac{(2x^3+1)(3x^2)}{(x^3-4)^2}$	3
			• ⁴ complete differentiation	• ⁴ $\frac{6x^2(x^3-4)-(2x^3+1)(3x^2)}{(x^3-4)^2}$	
			• ⁵ simplify ^{1,2}	• ⁵ $\frac{-27x^2}{(x^3-4)^2}$	

Notes:

- 1. •⁵ is available only where candidates have multiplied out brackets and collected like terms in the numerator.
- 2. •⁵ is not available where a candidate produces further incorrect simplification subsequent to a correct answer.

Commonly Observed Responses:

A. Candidates who rewrite function as
$$y = 2 + \frac{9}{x^3 - 4}$$
:

•³
$$y = 2 + 9(x^3 - 4)^{-1}$$
 stated (or implied at •⁴)
•⁴ $-9(x^3 - 4)^{-2} \dots$
•⁵ $-27x^2(x^3 - 4)^{-2}$

B. Candidates who use product rule:

•³
$$6x^{2}(x^{3}-4)^{-1} + (2x^{3}+1)...$$
 or $...(x^{3}-4)^{-1} - 3x^{2}(2x^{3}+1)(x^{3}-4)^{-2}$
•⁴ $6x^{2}(x^{3}-4)^{-1} - 3x^{2}(2x^{3}+1)(x^{3}-4)^{-2}$
•⁵ $-27x^{2}(x^{3}-4)^{-2}$

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark	
1.	(C)		• ⁶ start differentiation ¹	• ⁶ $\frac{-1}{\sqrt{1-(2x)^2}}$	3	
			• ⁷ complete differentiation ¹	$\bullet^7 \frac{-1}{\sqrt{1-(2x)^2}} \times 2$		
			• ⁸ evaluate ^{2,3}	• ⁸ -4		
Note	s:					
1. At	t ● ⁶ do	o not a	accept $\frac{-1}{\sqrt{1-2x^2}}$ unless either $\frac{\dots}{\sqrt{1-(2x)^2}}$	or $\frac{\dots}{\sqrt{1-4x^2}}$ appears at \bullet^7 .		
2. • ⁸	is ava	ailable	e only where a candidate's answer is co	nsistent with their stated derivative.		
3. W	3. Where a candidate produces an incorrect, rounded answer; at least 2 significant figures are					
re	required for the award of \bullet^8 .					
Com	Commonly Observed Responses:					

Question		on	Generic scheme	Illustrative scheme	Max mark		
2.	(a)		• ¹ begin process ¹	• ¹ eg 2 $\begin{vmatrix} p & 2 \\ -2 & 5 \end{vmatrix}$ -1 $\begin{vmatrix} -3 & 2 \\ -1 & 5 \end{vmatrix}$ +4 $\begin{vmatrix} -3 & p \\ -1 & -2 \end{vmatrix}$	3		
			• ² find determinant ^{1,2}	• ² 14 <i>p</i> +45			
			$ullet^3$ equate to 3 and find p^{-1}	• ³ -3			
Note	s:						
1. W	/here a	a cano	lidate interchanges any 2 rows, \bullet^1 is ave	ailable only where the determinant is e	quated		
to	o −3.	• ² and	I ● ³ are still available.	,			
2. A	t ●² ac	cept	2(5p+4)-1(-13)+4(6+p).				
Com	monly	v Obse	erved Responses:				
	(b)		• ⁴ any two simplified entries ^{1,2}	(<i>q</i> +16 5)	2		
			• ⁵ complete multiplication ²	• ^{4, 5} $\begin{vmatrix} -3q+8 & -12 \\ -2q+20 & -7 \end{vmatrix}$			
Note	s:						
1. If	the o	rder o	f the resultant matrix is not $3{ imes}2$ awar	rd 0/2.			
	$\begin{pmatrix} q+16 & 5 \end{pmatrix}$						
2. Fc	2. For the award of \bullet^4 and \bullet^5 , accept $\begin{vmatrix} pq+8 & -3+3p \end{vmatrix}$.						
	$\begin{pmatrix} -2q+20 & -7 \end{pmatrix}$						
Com	monly	v Obse	erved Responses:				

Question		n	Generic scheme	Illustrative scheme	Max mark	
2.	(c)		• ⁶ explain ^{1,2}	 ⁶ AB is not a square matrix AND A general statement about square matrices 	1	
Not	es:					
1. A	gener	al sta	tement about square matrices could ta	ke the following form:		
	\succ	Only s	quare matrices have an inverse			
	\triangleright	Only s	quare matrices have a determinant			
	\succ	Only s	quare matrices have an identity or uni	t matrix		
2. \	Vhere 1	the an	swer contains incorrect information (b	efore, between or after correct informa	ation),	
•	⁶ is not	avail	able.			
Con	nmonly	0bse	erved Responses:			
A. A	ccepta	able e	xplanations:			
s s	"It's not a square matrix and inverses are only defined for square matrices". "Since an identity matrix only exists for square matrices an inverse cannot be found. <i>AB</i> is not a square matrix". "You can only find an inverse if you can find a determinant. Only 2×2 or 3×3 matrices have a determinant. Since <i>AB</i> is not 2×2 or 3×3 , you cannot find a determinant so it has no inverse".					
B. I	nsuffic	ient/l	Jnacceptable explanations			
	Insufficient/Unacceptable explanations "It's not a square matrix so no inverse exists" (restates already given information) " AB is not a square matrix. Only square matrices have an inverse. The determinant of AB is 0". "It's not a square matrix so it has no identity matrix to invert it with". (meaning of second part of the statement is unclear) "It's not a 2×2 or a 3×3 matrix so the determinant cannot be found" (no general comment linking determinant and square matrices)					

Q	uestic	n	Generic scheme	Illustrative scheme	Max mark	
3.	(a)		• ¹ state why function is even ^{1,2,3,4,5,6}	• ¹ graph is symmetrical about the <i>y</i> -axis \therefore even OR $f(-x) = (-x)^2 - a^2 = x^2 - a^2 = f(x) \therefore$ even	1	
Note	Notes:					
1. D	o not a	accep	t use of the word 'reflecte	ed'.		
2. Ao	ccept	phras	es such as 'symmetrical in	the y -axis', 'symmetrical around the y -axis' etc.		
3. Fo	or just	ificat	ion using the graph, explic	tit mention of the y -axis or the line $x = 0$ must be m	nade.	
4. ● ¹	is not	avail	able for only stating ' $fig($ -	$-x) = f(x) \therefore$ even' or ' $f(-a) = f(a) \therefore$ even'.		
5. ● ¹	is not	avail	able for ' $f(-x) = -x^2 - a$	$x^{2} = x^{2} - a^{2} = f(x)$: even'.		
6. W	here t	he an	nswer contains incorrect ir	formation (before, between or after correct informa	ation),	
•1	is not	avail	able.			
Com	monly	' Obse	erved Responses:			
Nata	(b)		• ² sketch graph ^{1,2,3,4}	-a 0 a x	1	
1. TI	s. ne (loo	cal) m	aximum turning point mus	st be on the v -axis and the graph must exhibit line		
SV	mmet	ry.				
2. D	o not a	award	• ² if the x intercepts are	e not labelled.		
3. G	raph n	nust n	Not be 'smooth' at x inter	cepts.		
4. A	candi	date r	must make a reasonable at	ttempt at reproduction when $x < -a$ and $x > a$.		
Com	Commonly Observed Responses:					

Question		n	Generic scheme	Illustrative scheme	Max mark		
4.	(a)		 ¹ complete algebraic division and express in required form 	• ¹ $3 + \frac{4x + 19}{x^2 - x - 12}$	1		
Note	s:						
Com	monly	Obse	rved Responses:				
	(b)		• ² state expression ¹	$\bullet^2 \frac{A}{x+3} + \frac{B}{x-4}$	3		
			• ³ form linear equation and obtain one constant	• ³ $4x+19 = B(x+3)+A(x-4)$ B=5 or A=-1			
			• ⁴ obtain final constant and state full expression ²	• $3 - \frac{1}{x+3} + \frac{5}{x-4}$			
Note	s:						
1. W	1. Where a candidate incorrectly factorises, \bullet^2 is not available but \bullet^3 and \bullet^4 may still be awarded,						
ir	including the situations illustrated in the Commonly Observed Responses.						
2. D	o not a	ccep	t $3 + -\frac{1}{x+3} + \frac{5}{x-4}$ at \bullet^4 . Accept $3 + \frac{-1}{x+3} - \frac{1}{x+3}$	$+\frac{5}{x-4}$.			

	Question	Generic scheme		Illustrative scheme	Max mark
Co	mmonly Obse	rved Responses:			
1.	$3 + \frac{4x + 19}{x^2 - x - 12}$	$\frac{1}{2} = \frac{A}{x+3} + \frac{B}{x-4}$ $x = \frac{A}{x+3} + \frac{B}{x-4}$	Award •	2	
	4x + 19 - A(x)	-5	Award	3	
	leading to a f	final answer of $3 - \frac{1}{x+3} + \frac{5}{x-4}$	Award •	4	
2.	$3 + \frac{4x + 19}{x^2 - x - 12}$	$\frac{1}{2} = \frac{A}{x+3} + \frac{B}{x-4}$	Award •	2	
	4x + 19 = A(x)	(x-4)+B(x+3)			
	A = -1 or B	=5	Award •	3	
	leading to a f	final answer of $-\frac{1}{x+3} + \frac{5}{x-4}$	Do not a	ward • ⁴	
3.	$\frac{4x+19}{x^2-x-12} =$	$\frac{A}{x+3} + \frac{Bx+C}{x-4}$	Award •	2	
	4x + 19 = A(x) A = -1 or B	(x-4)+(Bx+C)(x+3) = 0 or C = 5	Award •	3	
	leading to 3-	$+\frac{5}{x-4}-\frac{1}{x+3}$	Award •	⁴ (Award 2/3 if $B \neq 0$)	
4.	$\frac{3x^2 + x - 17}{x^2 - x - 12} =$	$=\frac{A}{x+3}+\frac{B}{x-4}$	Do not a	ward • ²	
	$3x^2 + x - 17 =$ A = -1 or B	= A(x-4) + B(x+3) $= 5$	Award •	³ but \bullet^4 is not available	
5.	$\frac{3x^2 + x - 17}{x^2 - x - 12} =$	$=\frac{A}{x+3}+\frac{Bx+C}{x-4}$	Do not a	ward • ²	
	$3x^{2}+x-17 =$ A = -1 or B	= A(x-4) + (Bx+C)(x+3) = 3 or C = -7	Award •	³ but \bullet^4 is not available	
6.	$\frac{3x^2 + x - 17}{x^2 - x - 12} =$	$=\frac{A}{x+3}+\frac{Bx+C}{x-4}$			
	$3x^2 + x - 17 =$ A = -1 or B	= $A(x-4)+(Bx+C)(x+3)$ = 3 or $C = -7$	Award •	2	
	$\frac{3x-7}{x-4} = 3 + \frac{3}{2}$	$\frac{5}{x-4}$ leading to $3 - \frac{1}{x+3} + \frac{5}{x-4}$	Award •	3 and \bullet^{4}	

QuestionGeneric schemeIllustrative schemeMax
mark5.(a)* find
$$\frac{dx}{dt}$$
* $\frac{2}{2t+7}$ 26.* find $\frac{dy}{dx}$ * $\frac{1}{2t+7}$ * $\frac{2}{2t+7}$ Notes:- $\frac{1}{2t+7}$ * $\frac{2}{2t+7}$ 1. For *² do not accept $\frac{t}{1}$. $2t+7$ Commonly Observed Responses:Candidates who express y explicitly as a function of x:*1 $y = \frac{1}{4}(e^x - 7)^2$ **2 $\frac{dy}{dx} = \frac{1}{2}(e^x - 7)e^x$ **1 $y = \frac{1}{4}(e^x - 7)^2$ **2 $\frac{dy}{dx} = \frac{1}{2}(e^x - 7)e^x$ **3 $\frac{d^2y}{dx^2} = \frac{1}{12}$ **4 $\frac{1}{2}(2t+7)(4t+7)$ *Notes:**1. ** and ** are not available to candidates who only differentiate $\frac{dy}{dx}$ w.r.t. t. Evidence of multiplication or division by a function of t - other than $\ln(2t+7)$ or t^2 - must be present.2. At **, accept $\frac{1}{2}(8^x + 42t + 49)$.Commonly Observed Responses:1. Candidates who express y explicitly as a function of x. $\frac{1}{2}(e^x - 7)e^x + \frac{1}{2}e^x(e^x)$ Award **Award **2. Candidates who take a formula approach $\frac{2}{2t+7}^2e^x$ $\frac{2}{2t+7}^2e^x$ Award **2. Candidates who take a formula approach $\frac{2}{2t+7}^2e^x(2t+7)^2$ $\frac{1}{2}(2t+7)(4t+7)$ Award **

Q	Question		Generic scheme	Illustrative scheme	Max mark
6.			• ¹ evidence of relationship • ² substitute ²	• 1 $\frac{dV}{dr} = 4\pi r^2$ AND $\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$ OR $\frac{dr}{dt} = \frac{dV}{dt} \times \frac{dr}{dV}$ • 2 $-60 = 4\pi (3)^2 \frac{dr}{dt}$ OR $\frac{dr}{dt} = \frac{-60}{4\pi (3)^2}$	3
Note	s:		• ³ evaluate ^{1,2}	\bullet^3 $-\frac{5}{3\pi}$ cms ⁻¹	

- 1. At \bullet^3 units are required. Accept decimal equivalent to at least 2 significant figures (-0.53 cms^{-1}).
- 2. \bullet^2 may be implied at \bullet^3 .

Commonly Observed Responses:

A. Candidate attaches units to an exact value but omits them from a final answer (correctly rounded or otherwise).

$$-\frac{5}{3\pi} \text{ cms}^{-1} \qquad \text{Award } \bullet^3$$
$$= -0.5$$

B. Candidate attaches units to an incorrect decimal approximation and not to the exact value (or appropriately rounded decimal approximation).

$$-\frac{5}{3\pi} \text{ or } -0.53$$
$$= -0.5 \text{ cms}^{-1} \qquad \text{Do not award } \bullet^3$$

Question		on	Generic	scheme	Illustrative scheme	Max mark
7.	(a)		• ¹ find expression ^{1,2}		• $3n^2 + 16n$	1
Note	s:	I				
1. At	• ¹ acc	cept 6	$\times \frac{n(n+1)}{2} + 13 \times n$.			
2. At	• ¹ ace	cept <u>1</u> 2	$n \left[38 + 6 \left(n - 1 \right) \right]$ ob	otained via an arithr	netic series.	
Com	monly	v Obse	erved Responses:			
	(b)		• ² substitute 20 ar subtraction from	nd evidence of m this term ^{1,2}	• ² $(3 \times 20^{2} + 16 \times 20)$	2
			• ³ substitute for <i>p</i> expression ³	and find	• ³ 1520 – $3p^2$ – 16 p	
Note	s:					
1. W is	here a' not a'	a canc vailab	lidate produces furt le.	ther incorrect simpl	ification, subsequent to \bullet^1 being awarde	ed, ● ²
2. Av	ward •	² for	$\sum_{1}^{20} (6r+13) - \sum_{1}^{p} (6r+13) = \sum_{1}^{p} \sum_{$	+13)only where the	substitution is not carried out. Disrega	rd
e	r rors i	n sign	na notation provided	d a candidate produ	ces an answer consistent with their resp	oonse
to	o (a).					
3. D	3. Do not award \bullet^3 for incorrect working subsequent to a correct answer.					
Com	monly	v Obse	erved Responses:			
Α.	A. $6 \times \frac{n(n+1)}{2} + 13$ incorrect expression from (a)					
	leading to:					
	(3>	× 20 ² +	$-3 \times 20 + 13) - \dots$	Award \bullet^2		
	12	60-3	p^2-3p	Award \bullet^3		

Question		n	Generic scheme	Illustrative scheme	Max mark		
8.			• ¹ solve auxiliary equation	• $m = -4, -7$	5		
			\bullet^2 state general solution ¹	$\bullet^2 y = Ae^{-4x} + Be^{-7x}$			
			• ³ differentiate ²	• ³ $\frac{dy}{dx} = -4Ae^{-4x} - 7Be^{-7x}$ stated or implied at • ⁴			
			$ullet^4$ form equations and solve for a constant	• ⁴ $A=3$ or $B=-3$			
			 ⁵ find second constant and state particular solution ³ 	• $y = 3e^{-4x} - 3e^{-7x}$			
Note	s:			· ·			
1. Do	o not v	vithho	old \bullet^2 for the omission of ' $y = $ '.				
2. Do not withhold \bullet^3 for the omission of ' $\frac{dy}{dx} =$ '.							
3. To	3. To award \bullet^5 , ' $y =$ ' must be present.						
Commonly Observed Responses:							

Question		n	Generic scheme	Illustrative scheme	Max mark	
9.	(a)		• ¹ state general term ^{1,2,3}	•1 $\binom{7}{r} (2x^2)^{7-r} \left(\frac{-d}{x^3}\right)^r$	3	
			• ² simplify powers of x or coefficients ²	• ² x^{14-5r} or $2^{7-r}(-d)^r$		
			• ³ state simplified general term (complete simplification) ^{2,4,5}	• ³ $\binom{7}{r} 2^{7-r} (-d)^r x^{14-5r}$		
Note	s:					
1. C	andida	ites m	hay also start with a general term of $\begin{pmatrix} 7 \\ r \end{pmatrix}$	$\int (2x^2)^r \left(\frac{-d}{x^3}\right)^{7-r}$ to obtain a simplified g	general	
te	erm of	$\begin{vmatrix} r \\ r \end{vmatrix}^2$	$\sum^{r} (-d)^{r} x^{-21+5r}$.			
2. W ge	'here c eneral	candic term	lates write out a full binomial expansio is identifiable in (b).	n, \bullet^1 , \bullet^2 and \bullet^3 are not available unless	the	
3. Ca	andida	tes wl	ho write down $\binom{7}{r} 2^{7-r} \left(-d\right)^r x^{14-5r}$ with	no working receive full marks.		
4. ● ³	is una	vailab	ble to candidates who, in (a), produce f	urther incorrect simplification subseque	ent to	
a	correc	ct ans	wer eg $\left(-2d\right)^{7-2r}$.			
5. W	here 2	2 ^{7-r} a	nd x^{14-5r} do not appear within a single	term, \bullet^3 is not available		
Com	monly	0bse	rved Responses:	eral term has been isolated		
1. 0		(7)	$2\sqrt{7-r}\left(-d\right)^r$	$\frac{7}{7}(7)(-2)^{7-r}(-d)^r$		
	$\sum_{r=0}^{\infty} \left \right $	(r)(2	(x^2) $\left(\frac{\pi}{x^3}\right)$	$\sum_{r=0}^{\infty} \left(r \right) \left(2x^2 \right) \left(\frac{\pi}{x^3} \right)$		
=	$\sum_{r=0}^{7} \left($	$\binom{7}{r} 2^7$	$= (-d)^r x^{14-5r} =$	$\binom{7}{r} 2^{7-r} \left(-d\right)^r x^{14-5r}$		
D	o not a	award	• ¹ . Award • ² and • ³ . Disressign.	egard the incorrect use of the final equ Award \bullet^1 , \bullet^2 and \bullet^3 .	als	
3. B	inomia	al exp	pression has been equated to general f	term.		
	$2x^2 - \frac{1}{2}$	$\left(\frac{d}{x^3}\right)^7$	$= \binom{7}{r} (2x^2)^{7-r} \left(\frac{-d}{x^3}\right)^r$			
D	isregaı	rd the	incorrect use of the equals sign. Award	d ∙ ¹ .		
4. N	egativ	e sigr	n omitted.			
	$\binom{7}{r} (2x^2)^{7-r} \left(\frac{d}{x^3}\right)^r$ Do not award \bullet^1 but \bullet^2 and \bullet^3 are still available.					
5. B	racket	s omi	itted around $-d$			
	$\binom{7}{r}$ 2 ^{7-r}	$-d^r x$	c^{14-5r} Do not award \bullet^3 .			
	page 17					

Т

Question		on	Generic scheme	Illustrative scheme	Max mark	
9.	(b)		• ⁴ obtain value of r ^{1,2}	• $r = 3$	2	
			• ⁵ find value of d^{-3}	• ⁵ $d = 5$		
Note	es:					
1. T	he alte	ernati	ve expansion leads to $r=4$.			
2. W	/here a	a cano	didate writes out a full expansion $ullet^4$ ma	y be awarded only where this is comple	te and	
С	correct at least as far as the required term (in either direction).					
3. W e'	/here a	a cano ion of	didate obtains an incorrect binomial ex a root is required.	pansion, $ullet^5$ will be available only where	the	

Commonly Observed Responses:

Binomial expansion:

 $128x^{14} - 448dx^9 + 672d^2x^4 - 560d^3x^{-1} + 280d^4x^{-6} - 84d^5x^{-11} + 14d^6x^{-16} - d^7x^{-21}$

Question		on	Generic scheme	Illustrative scheme	Max mark	
10.	(a)		• ¹ apply chain or product rule	• $2y\frac{dy}{dx}$ or $y + x\frac{dy}{dx}$	3	
			• ² complete differentiation	• ² $2x + 2y \frac{dy}{dx} = y + x \frac{dy}{dx}$		
			• ³ express $\frac{dy}{dx}$ in terms of x and y ⁻¹	• ³ $\frac{dy}{dx} = \frac{y-2x}{2y-x}$		
Note	s:					
1. •³ di	is ava fferer	ailable ntiatic	e only where $\frac{dy}{dx}$ appears more than once, after on.	er the candidate has completed	their	
Com	monly	v Obse	erved Responses:			
	(b)		• ⁴ equate denominator of $\frac{dy}{dx}$ to zero ¹	$\bullet^4 2y - x = 0$	2	
			• ⁵ calculate values of $k^{1,2}$	• ⁵ $k = \pm 4$		
Note	s:					
1. At	t• ⁵ , a	ccept	$x = \pm 4$.			
2. W	here a	a cano	lidate equates the numerator to zero, $ullet^4$ and $ullet$	∙⁵ are not available.		
Com	monly	v Obse	erved Responses:			
Inter	sectio	on me	thod.			
	y^2	-ky+	$(k^2 - 12) = 0$ Substitute for x and expr	ress in general form		
•4	(-/	$k)^2 - 4$	$k(k^2 - 12) = 0$ Communicate condition for equal roots			
•5	<i>k</i> =	= ±4				

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
11.	(a)		• ¹ state counterexample ^{1,2}	• ¹ eg when $n = 4$, $n^2 + n + 1 = 21$ which is not prime	1
Note	s:		·		
1. A	candi	date i	must demonstrate a value of n , evalua	te $n^2 + n + 1$ and communicate that this	s value
is	not p	rime.			
2. W	here	the ar	nswer contains incorrect information (b	efore, between or after correct information	ation),
•1	is no	t avai	lable.		
Com	monly	/ Obse	erved Responses:		
4 ² +	4+1=	=21,	which is not prime. Award \bullet^1		
(valu	e of <i>i</i>	n has	been demonstrated)		
	(b)	(i)	• ² write down contrapositive statement ^{1,2,8}	• ² If <i>n</i> is even then $n^2 - 2n + 7$ is odd	1
		(ii)	• ³ write down appropriate form for n	• ³ $n = 2k, k \in \mathbb{N}$ and	3
			AND substitute ^{1,3,4,5,9}	$(2k)^2 - 2(2k) + 7$	
			• ⁴ show $n^2 - 2n + 7$ is odd ^{1,6,7,9}	• ⁴ eg 2($2k^2 - 2k + 3$)+1 which is	
				odd since $2k^2 - 2k + 3 \in \mathbb{N}$	
			• ⁵ communicate ^{1,8,9}	• ⁵ contrapositive statement is true AND	
				therefore original statement is true	
Note	s:	1	1	1	L

- 1. Marks \bullet^2 , \bullet^3 , \bullet^4 and \bullet^5 are not available to a candidate whose statement of the contrapositive begins "If $n^2 2n + 7 \dots$ ".
- 2. Award \bullet^2 for 'If *n* is not odd then $n^2 2n + 7$ is not even'.
- 3. At \bullet^3 accept $k \in \mathbb{Z}^+$ but do not accept $k \in \mathbb{Z}$.
- 4. At \bullet^3 do not accept n = 2n.
- 5. At \bullet^3 the form of *n* must be consistent with the candidate's response to b(i).
- 6. Do not withhold \bullet^4 for the omission of $2k^2 2k + 3 \in \mathbb{N}$.
- 7. At \bullet^4 accept any valid expression of the form ab+c, where a is even, b is an integer and c is odd.
- 8. •⁵ is available only where a candidate's conclusion states that the contrapositive is true and links to the original statement.
- 9. Where a candidate's response mentions contradiction, \bullet^3 , \bullet^4 and \bullet^5 are not available.

Question		Generic scheme		Illustrative scheme	Max mark
Comm	nonly Obse	erved Responses:			
Refer then	to note 3 k must be	when considering any of the responsion k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole	onses e num	below. Where a candidate uses $n = 2k$ - obser".	+1
Α.	If <i>n</i> is or $n = 2k - 2k$	dd then $n^2 - 2n + 7$ is even 1, $k \in \mathbb{N}$	Do n	Not award \bullet^2	
	$(2k-1)^2$	-2(2k-1)+7	Awa	rd ● ³	
	$2(2k^2-4)$	4k+5) which is even	Awa	rd ∙ ⁴	
	The cont the origin	rapositive statement is true so nal statement is true.	Awa	rd ∙⁵	
В.	If <i>n</i> is or $n = 2k - 2k$	dd then $n^2 - 2n + 7$ is odd 1, $k \in \mathbb{N}$	Do n	ot award \bullet^2	
	$(2k-1)^2$	-2(2k-1)+7	Awa	rd ● ³	
	$2(2k^2-4)$	(4k+5) which is not odd	Do n	ot award \bullet^4 . \bullet^5 is not available.	
c.	If <i>n</i> is ev $n = 2k$,	ven then $n^2 - 2n + 7$ is even $k \in \mathbb{N}$	Do n	ot award • ²	
	$(2k)^2 - 2$	(2k)+7	Awa	rd • ³	
	$2(2k^2-2)$	(k+3)+1 which is odd	Do n	ot award $ullet^4$. $ullet^5$ is not available.	

Question		n	Generic scheme	Illustrative scheme	Max mark
13.			• ¹ separate variables and write integral equation ¹	• ¹ $\int \frac{1}{12 - V} dV = \int k dt$	5
			• ² integrate LHS	• ² $-\ln(12-V)$	
			\bullet^3 integrate RHS 2	• ³ $kt + c$	
			• ⁴ evaluate constant of integration ²	• ⁴ -ln10	
			• ⁵ express V in terms of k and t 2,3,4	• ⁵ $V = 12 - 10e^{-kt}$	
Note	s:		1.1. where first and first appear		
1. Do	o not a	awaro	• where $\int dv$ and $\int dt$ do not appear.		
2. Fo	or cano navaila	didate able.	es who omit the constant of integration, \bullet^3 m	ay be awarded but \bullet^4 and \bullet^5 are	
3. ● ⁵	is una	availa	ble to candidates who omit the negative sign	at • ² .	
4. At	t• ⁵ , ac	ccept	$V = 12 - \frac{10}{e^{kt}}$ or $V = \frac{12e^{kt} - 10}{e^{kt}}$ but do not acc	cept the appearance of eg $e^{-kt+\ln10}$	in the
fi	nal ans	swer.			
Com	monly	Obse	erved Responses:		
Usin	g integ	gratin	ng factor.		
$\frac{dV}{dt}$	+kV =	12 <i>k</i>			
IF = -	e^{kt}		Award ● ¹		
$\frac{d}{dt}(V$	$(e^{kt}) =$	12 <i>ke</i> ^k	1		
Ve^{kt}	=∫12 <i>k</i>	ke ^{kt} dt	Award \bullet^2		
Ve ^{kt}	$=$ 12 e^{kt}	+ <i>c</i>	Award \bullet^3		
c = -	-10		Award ● ⁴		
V = 1	12–10	e^{-kt}	Award \bullet^5		

Question		n	Generic scheme	Illustrative scheme	Max mark
14.			• ¹ show true when $n = 1$ ¹	• ¹ when $n = 1$ LHS = 1! ×1=1 RHS = $(1+1)!-1=1$ so result is true when $n = 1$.	5
			• ² assume (statement) true for n = k AND consider whether (statement) true for $n = k + 1^{-2}$	• ² suitable statement AND $\sum_{r=1}^{k} r!r = (k+1)!-1$ AND $\sum_{r=1}^{k+1} r!r =$	
			• ³ state sum to $(k+1)$ terms using inductive hypothesis ⁵	• ³ $(k+1)!-1+(k+1)!(k+1)$	
			• ⁴ extract $(k+1)!$ as common factor _{3,5}	• ⁴ $(k+1)!(k+2)-1$	
			• ⁵ express sum explicitly in terms of $(k+1)$ or achieve stated aim/goal AND communicate ^{4,5,6}	• ⁵ $((k+1)+1)!-1$ AND If true for $n = k$ then true for n = k+1. Also shown true for n = 1 therefore, by induction, true for all positive integers n .	

Question	Generic scheme	Illustrative scheme	Max mark				
Notes:	l						
1. "RHS = 1 , LH must demons Accept 2!–1 Where a cand	1. "RHS = 1, LHS = 1" and/or "True for $n = 1$ " are insufficient for the award of \bullet^1 . A candidate must demonstrate evidence of substitution into both expressions. Accept 2!-1 for RHS. Where a candidate does not independently evaluate the LHS and RHS. \bullet^1 may still be awarded.						
 For ●² accept <i>▶</i> "If tru 	Table phrases for $n = k$ contain: The for"; "Suppose true for"; "Assume	me true for".					
For • ² insuffic	cient phrases for $n = k$ contain:						
➤ "Cons	ider $n = k$ ", "assume $n = k$ ", "let n	=k ".					
For an insuffi as part of the	cient phrase, do not award \bullet^2 unless an e conclusion at \bullet^5 .	acceptable statement subsequently ap	pears				
For • ² unacce	ptable phrases for $n = k$ contain:						
≻ "True	for $n = k$ ", "Consider true for $n = k$ "						
For an unacc	eptable phrase, do not award $ullet^2$ but $ullet^5$ r	nay still be available.					
For • ² unacce	ptable phrases for $n = k + 1$ contain:						
> "Cons	ider true for $n = k + 1$ ", "true for $n = k$	+1"; " $\sum_{r=1}^{k+1} r!r = (k+2)!-1$ " (with no f	urther				
WOLKI	lg)						
3. At • ⁴ accept ((k+1)!(1+k+1)-1.						
4. ● ⁵ is unavailat	ole to candidates who have not been av	varded •4.					
5. Full marks ar subsequently	5. Full marks are available to candidates who state an aim/goal earlier in the proof and who subsequently achieve the stated aim/goal, provided $((k+1)+1)!-1$ appears at some point.						
6. Following the acceptable re	6. Following the required algebra and statement of the inductive hypothesis, the minimal acceptable response for \bullet^5 is:						
"Then true fo	r $n = k + 1$, but since true for $n = 1$, the	en true for all n " or equivalent.					
Commonly Obse	rved Responses:						

Question		on	Generic scheme	Illustrative scheme	Max mark
15.	(a)		\bullet^1 verify that the line lies on one plane 1	• ¹ eg 2(2 λ +3)-3(λ -1)- λ =9	2
			• ² verify for other plane and state conclusion ²	• ² eg $2\lambda+3+\lambda-1-3\lambda=2$; therefore the line lies on both planes	
			OR	OR	
			• ¹ substitute parameter for x, y or z into both equations	• ¹ eg $2x-3y-\lambda=9$ $x+y-3\lambda=2$	
			• ² solve simultaneous equations leading to parametric equations ¹	• ² $x = 2\lambda + 3; y = \lambda - 1; z = \lambda$	
			OR	OR	
			• ¹ use vector product to find direction vector OR substitute eg $z = 0$ to find common point	• ¹ eg 10 i + 5 j + 5 k OR $(3, -1, 0)$	
			• ² find parametric equations	• ² (3, -1, 0) OR 10 i +5 j +5 k AND $x = 2\lambda + 3; y = \lambda - 1; z = \lambda$	
Note 1. • ²	is ava	ilable	only where there is supporting algebraic evid	ence.	<u> </u>

2. Where a candidate elects to substitute the parametric equations for L_1 into the equations of π_1 and π_2 and concludes that " L_1 intersects π_1 and π_2 ", do not award \bullet^2 .

Commonly Observed Responses:

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark		
15.	(b)		• ³ identify vectors ¹	• ³ $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -2 \\ 4 \\ 3 \end{pmatrix}$	3		
			• ⁴ start to calculate angle ^{2,3}	• ⁴ $\cos\theta = \left(\frac{3}{\sqrt{6}\sqrt{29}}\right)$			
			• ⁵ calculate complement ^{2,4}	 ⁵ any answer which rounds to 0.229 or 13° 			
Note	s:						
1. At	• ³ , a	ccept	the appearance of the vectors within an atten	npt to find a scalar or vector pro	duct.		
2. Fo	2. For a candidate who uses $\sin^{-1}\left(\frac{3}{\sqrt{6}\sqrt{29}}\right)$ as a means of obtaining the complement directly (with						
no	no further processing) \bullet^4 and \bullet^5 may be awarded.						
3. Fc	3. For a candidate who finds $\sin^{-1}\left(\frac{3}{\sqrt{6\sqrt{29}}}\right)$ and proceeds to find its complement, • ⁴ is unavailable.						
4. D	o not	award	$ullet^5$ where the degree symbol has been omittee	1.			

Commonly Observed Responses:

Use of definition of vector product:

$$\sin \theta = \frac{\sqrt{165}}{\sqrt{6}\sqrt{29}} \qquad \text{Award } \bullet^4$$

Q	Question		Generic scheme	Illustrative scheme	Max mark
15.	(C)		• ⁶ parametric equations for L_2 ²	• $x = -2\mu + 1; y = 4\mu + 3;$ $z = 3\mu - 2$	4
			• ⁷ two equations for two parameters	• ⁷ any two from $2\lambda + 3 = -2\mu + 1;$ $\lambda - 1 = 4\mu + 3; \lambda = 3\mu - 2$	
			• ⁸ solve for two possible parameters ¹	• ⁸ eg $\mu = -1; \lambda = 0$	
			 ⁹ substitute into remaining equation and state conclusion ³ 	• ⁹ eg LHS = 0, RHS = -5 so lines do not intersect.	

- Notes:
- 1. Alternative responses:

```
Equating x and z:

2\lambda + 3 = -2\mu + 1

\lambda = 3\mu - 2

leading to \lambda = -\frac{5}{4}, \mu = \frac{1}{4}

LHS = -\frac{9}{4}, RHS = 4

Equating y and z:

\lambda - 1 = 4\mu + 3

\lambda = 3\mu - 2

leading to \lambda = -20, \mu = -6

LHS = -37, RHS = 13
```

- 2. Where candidates employ the same parameter twice leading to $x = -2\lambda + 1$; $y = 4\lambda + 3$; $z = 3\lambda 2$ only \bullet^6 may be awarded.
- 3. For a final response of "0 = -5 so the lines do not intersect" do not award \bullet^9 unless the candidate subsequently communicates the inconsistency of 0 = -5.

Commonly Observed Responses: A. z = 0, z = -3-2, lines do not intersect Award •⁹

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
16.	(a)		 evidence of integration by parts 	• $\frac{e^{4x}}{4}(x^2-2x+1)$	5
			• ² complete first application ¹	$\bullet^2 \dots \int (2x-2) \frac{e^{4x}}{4} dx$	
			 ³ second application of integration by parts 	• ³ $\cdots \left[\frac{e^{4x}}{16} (2x-2) - \frac{1}{8} \int e^{4x} dx \right]$	
			• ⁴ complete integration and include limits ²	• ⁴ $\left[\frac{e^{4x}}{4}(x^2-2x+1)\right]_0^1 - \left[\frac{1}{16}(2x-2)e^{4x}-\frac{1}{32}e^{4x}\right]_0^1$	
			• ⁵ evaluate ^{2,3}	• ⁵ $\frac{1}{32}(e^4-13)$	
Note 1. Di 2. Ev 3. Do	s: isrega /idenc o not a	rd the e of l award	e omission of ' dx '. imits may not appear unti • ⁵ for a decimal approxin	$l \bullet^5$. nation, unless preceded by the exact value.	
Com	monly	0bse	erved Responses:		
	(b)		• ⁶ correct form of integral ^{1,2,3}	$\bullet^6 \pi \int_0^1 y^2 dx$	3
			• ⁷ find expression to integrate ⁴	• ⁷ $16\pi \int_0^1 (x^2 - 2x + 1) e^{4x} dx$	
			 integrate and evaluate ^{5,6} 	• ⁸ $\frac{\pi}{2}(e^4-13)$	
Note	s:				
1. Fo	is not	awaro	I of \bullet° , limits must appear able unless " dr " appears	at some point.	
2. • 3 Δ1	ان اندا ماند	ccent	$\pi \int_{1}^{1} [f(x)]^2 dx$		
J. A	. . , a	ccept	$J_0 \lfloor J (x) \rfloor ax$		

4. Evidence for the award of \bullet^7 must include all of the following:

• 16
•
$$(x^2 - 2x + 1)$$
 or $(x - 1)^2$

$$e^{4x}$$

unless an exact value appears at $\bullet^8.$

5. Do not award \bullet^8 for a decimal approximation unless:

preceded by an exact value

OR

 \bullet^5 has been withheld for the same reason AND there is sufficient evidence for \bullet^7 .

6. Do not award \bullet^8 for a negative volume (including eg $\frac{\pi}{2}(e^2-13)$).

Commonly Observed Responses:

Q	Question		Generic scheme	Illustrative scheme	Max mark		
17.	(a)		• ¹ substitute and calculate one ratio ^{1,2,3,4}	• $\frac{-21}{63} = -\frac{1}{3}$ or $\frac{7}{-21} = -\frac{1}{3}$	2		
			• ² calculate second ratio and state common ratio ^{1,5}	• ² $\frac{7}{-21} = -\frac{1}{3}$ or $\frac{-21}{63} = -\frac{1}{3}$ So $r = -\frac{1}{3}$			
Note	s:			L			
1. W	here a	a cand	lidate calculates the first three terms only, $ullet^1$ a	nd \bullet^2 are not available.			
2. W	here a	a cand	lidate calculates the first three terms and simpl	y states $r = -\frac{1}{3}$, award \bullet^1 .			
3. W	3. Where a candidate finds the first three terms followed by eg " $r = \frac{-21}{7}$, so $r = -\frac{1}{3}$ ", do not award						
4. W	here a	a cano	didate calculates the first three terms and then	substitutes one pair of number	s into		
th	$n n^{th}$	term	formula to calculate r , award \bullet^1 only.	ate has considered a second pa	ir of		
5. FC	erms.	awar		ate has considered a second pa			
Com	monly	v Obse	erved Responses:				
Α.	Fir	st thr	ee terms found followed by:				
	$\frac{-21}{63} = -\frac{1}{3}$ Award • ¹						
	$-21 \times \left(-\frac{1}{3}\right) = 7$ so $r = -\frac{1}{3}$ Award \bullet^2						
	(b)	(i)	• ³ state condition ^{1,2}	• ³ $\left -\frac{1}{3}\right < 1$	1		
Notes:							
1. At \bullet^3 , $-\frac{1}{3}$ may be replaced by a letter consistent with the candidate's answer in (a). However, in							
the case where a candidate obtains a value in (a) outside the open interval $(-1,1)$, \bullet^3 will be							
available only where they also acknowledge that there is no sum to infinity.							
2. Award \bullet^3 only for a strict inequality, whether expressed algebraically or in words.							
Commonly Observed Responses:							

Question		on	Generic scheme		Illustrative scheme	Max mark
17.	(b)	(ii)	• ⁴ begin to substitute ^{1,2,3}		$\bullet^4 \frac{\cdots}{1 - \left(-\frac{1}{3}\right)}$	2
			• ⁵ calculate sum ^{1,2,3}		• ⁵ $\frac{189}{4}$ or $47 \cdot 25$	
Note	s: 'here ;	a cano	lidate calculates a common ratio outwi	th the or	pen interval (-11) \bullet^4 and \bullet^5 at	re not
a	/ailabl	le.				
2. W	here a	a canc	didate writes $S_n = \frac{63\left(1 - \left(-\frac{1}{3}\right)^n\right)}{1 - \left(-\frac{1}{3}\right)}$, • ⁴ w	vill be av	ailable only where a candidate	e states
th	iat as	$n \rightarrow \infty$	$\infty \left(-\frac{1}{3}\right)^n \rightarrow 0$. • ⁵ is still available.			
3. Fo	r a co	rrect	answer with no working, \bullet^4 and \bullet^5 are r	not availa	able.	
Com	moniy	ODSE	erved Responses:	Γ		
17.	(c)	(i)	• ⁶ equate ratios	$\bullet^6 \frac{-2x}{5x}$	$\frac{x+1}{x+8} = \frac{x-4}{-2x+1}$	2
			 ⁷ perform algebraic manipulation leading to formation of quadratic equation 	• ⁷ x^2 –	8x - 33 = 0	
Note	s: /idenc	e for	the award of \bullet^7 must include the expan	nsion of t	he products of two pairs of bra	ackets.
Commonly Observed Responses:						
		(ii)	e ⁸ calculate second value of a	e ⁸	2	2
		(11)	• Calculate second value of x	• $x = 1$	-3	2
Noto	c•		• ⁷ find first three terms	• -7,	7, -7	
NOTES:						
Commonly Observed Responses:						
		(iii)	• ¹⁰ state S_{2n} and justify ^{1,2}	• ¹⁰ 0 sin of te	ace eg $2n$ is even and so pairs erms cancel each other out	1
Notes 1. For a descriptive justification, reference must be made either to an even number of terms or to the fact that $2n$ is even (and the consequence thereof). 2. At \bullet^{10} accept $S_{2n} = 0$ since $\frac{-7(1-(-1)^{2n})}{1-(-1)} = 0$.						

Question		on	Generic scheme	Illustrative scheme	Max mark
18.	(a)	(i)	• ¹ write in Cartesian form	• ¹ $a-a\sqrt{3}i$	1
Note	s:	I			
Com	monly	v Obse	erved Responses:		
		(ii)	• ² calculate modulus ^{1,6}	• ² 2 <i>a</i>	3
			• ³ calculate argument ^{2,3,4}	$\bullet^3 -\frac{\pi}{3}$	
			• ⁴ write in polar form ^{1,4,5,6}	• ⁴ $2a\left(\cos\left(-\frac{\pi}{3}\right)+i\sin\left(-\frac{\pi}{3}\right)\right)$	
Note	s:				
1. At	•² ac	cept	$\sqrt{4a^2}$, but it must be simplified at \bullet^4 .		
2. For \bullet^3 , accept any answer of the form $-\frac{\pi}{3}+2k\pi$, $k\in\mathbb{Z}$.					
3. Accept an argument expressed in degrees, with or without a degree symbol.					
4. Evidence for \bullet^3 may not appear until b(i). In this case, \bullet^4 is not available.					
5. At •4, accept $w = 2a\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$.					
6. Do not withhold \bullet^4 for an unsimplified modulus if \bullet^2 has already been withheld for the same reason.					
Commonly Observed Responses:					

Question		on	Generic scheme	Illustrative scheme	Max mark
18.	(b)	(i)	• ⁵ begin process ¹	• ⁵ $z_1 = 8^{\frac{1}{3}} \left(\cos\left(-\frac{\pi}{3}\right) + i \sin\left(-\frac{\pi}{3}\right) \right)^{\frac{1}{3}}$ stated or implied by • ⁶	4
			• ⁶ complete process ¹	• $z_1 = 8^{\frac{1}{3}} \left(\cos\left(-\frac{\pi}{9}\right) + i \sin\left(-\frac{\pi}{9}\right) \right)$	
			• ⁷ state value of k ^{1,2}	• ⁷ $k = 2$	
			• ⁸ state value of m ^{1,2}	• ⁸ $m = -9$	

Notes:

- 1. Where the operations carried out on the modulus and argument are incompatible eg cubing the modulus and dividing the argument by three, do not award •⁵ or •⁶; however, •⁷ and •⁸ are still available.
- 2. Where a candidate obtains a non-integer value for k or m, \bullet^7 or \bullet^8 is not available.

Commonly Observed Responses:					
Α.	$z_1^3 = k^3 \left(\cos\frac{\pi}{m} + i\sin\frac{\pi}{m}\right)^3$	Award ● ⁵			
	stated or implied by \bullet^6				
	$z_1^3 = k^3 \left(\cos \frac{3\pi}{m} + i \sin \frac{3\pi}{m} \right)$	Award ● ⁶			
В.	$w^{3} = 8^{3} \left(\cos \left(-\frac{\pi}{3} \right) + i \sin \left(-\frac{\pi}{3} \right) \right)^{3}$	Do not award \bullet^5			
	$w^3 = 8^3 \left(\cos\left(-\pi\right) + i \sin\left(-\pi\right) \right)$	Award • ⁶			
	<i>k</i> = 512	Award \bullet^7			
	m = -1	Award • ⁸			
C.	Answers without working:				
	1. $k = 2$ and $m = -9$	Award full marks			
	2. $k=2$ and $m \neq -9$	Award \bullet^7 only			
	3. $k \neq 2$ and $m = -9$	Award • ⁸ only			

Question		on	Generic scheme	Illustrative scheme	Max mark	
18.	(b)	(ii)	• ⁹ begin to add or subtract $\frac{2\pi}{3}$ to or from argument of z_1 • ¹⁰ state roots	• ⁹ $\pm \frac{2\pi}{3}$ stated or implied by • ¹⁰ • ¹⁰ $z_2 = 2\left(\cos\frac{5\pi}{9} + i\sin\frac{5\pi}{9}\right)$ $z_3 = 2\left(\cos\left(-\frac{7\pi}{9}\right) + i\sin\left(-\frac{7\pi}{9}\right)\right)$	2	
 Notes: 1. The addition of other multiples of 2π/3, leading to other forms of roots, is acceptable. 2. Where a candidate finds one further root, consistent with adding or subtracting 2π/3 to their response to b(i) and without working, •⁹ may be awarded. 3. •¹⁰ is available only where a candidate produces exactly two roots, with consistent spacing, 						
distinct from one another and also from z_1 .						

[END OF MARKING INSTRUCTIONS]