2015 Mathematics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2015
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Mathematics Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Principal Assessor.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Mathematics Advanced Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

General Marking Principles

These principles describe the approach taken when marking Advanced Higher Mathematics papers. For more detailed guidance please refer to the detailed Marking Instructions.

1 The main principle is to give credit for the skills demonstrated and the criteria met. Failure to have a correct method may not preclude a candidate gaining credit for their solution.

2 The answer to one part of a question, even if incorrect, can be accepted as a basis for subsequent dependent parts of the question.

3 The following are not penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- legitimate variation in numerical values/algebraic expressions.

4 Full credit will only be given where the solution contains appropriate working. Where the correct answer might be obtained by inspection or mentally, credit may be given.

5 Sometimes the method to be used in a particular question is explicitly stated; no credit will be given where a candidate obtains the correct answer by an alternative method.

6 Where the method to be used in a particular question is not explicitly stated in the question paper, full credit is available for an alternative valid method. (Some likely alternatives are included but these should not be assumed to be the only acceptable ones.)
In the detailed Marking Instructions which follow, marks are shown alongside the line for which they are awarded. When marking, no comments at all should be made on the script. The total mark for each question should appear in one of the right-hand margins. The following codes should be used where applicable:
\checkmark - correct; $\quad \mathrm{X}$ - wrong; working underlined - wrong;
tickcross - mark(s) awarded for follow-through from previous answer;
$\wedge \wedge$ - mark(s) lost through omission of essential working or incomplete answer;
wavy or broken underline - bad form, but not penalised.

Part Two: Marking Instructions for each Question

Question		Expected Answer/s	Max Mark	Additional Guidance
2	a	$\begin{aligned} \frac{d y}{d x} & =\frac{5\left(x^{2}+2\right)-2 x(5 x+1)}{\left(x^{2}+2\right)^{2}} \\ & =\frac{-5 x^{2}-2 x+10}{\left(x^{2}+2\right)^{2}} \end{aligned}$	3	- For using quotient rule and correct denominator ${ }^{3}$. -2 correct differentiation for both parts of numerator $\bullet^{3} \quad$ simplified form ${ }^{2}$.
2	b	$\begin{aligned} & \begin{aligned} f^{\prime}(x) & =2 e^{2 x} \sin ^{2} 3 x+e^{2 x} \cdot 2 \cdot 3 \cdot \sin 3 x \cos 3 x \\ & =2 e^{2 x} \sin 3 x(\sin 3 x+3 \cos 3 x) \\ \text { or } \quad & e^{2 x}\left(2 \sin ^{2} 3 x+3 \sin 6 x\right) \end{aligned} \end{aligned}$	3	- ${ }^{4}$ evidence of using product rule - 5 first term - ${ }^{6}$ second term

Notes:

2.1 Alternative Method

Product rule

$$
\begin{aligned}
& y=(5 x+1)\left(x^{2}+2\right)^{-1} \\
& \frac{d y}{d x}=-(5 x+1)\left(x^{2}+2\right)^{-2} \cdot 2 x+5\left(x^{2}+2\right)^{-1}
\end{aligned}
$$

$=\frac{-5 x^{2}-2 x+10}{\left(x^{2}+2\right)^{2}}$

- ${ }^{1}$ for evidence of using product rule and one term correct.
- ${ }^{2}$ for second term
- 3 simplified fraction
2.2 Where a candidate has a wrong, but factorisable expression in the numerator, factorisation is not required for award of this mark.
2.3 Where terms are the wrong way round, lose \bullet^{1}
$2.4 \frac{d}{d x}\left[(5 x+1)\left(x^{2}+2\right)\right] \ldots=15 x^{2}+2 x=10:$ award $\left[\frac{0}{3}\right]$.

Notes:

4.1 Published form would have $\bullet{ }^{4}$ at expanded form, not as marked.
4.2 Rearrangement and explicit statement of $\frac{d y}{d x}$ not required for full marks.
4.3 Where candidate asserts that $\frac{d}{d x}(14)=14, \bullet^{1}$ not given, but \bullet^{2}, \bullet^{3} and \bullet^{4} all possible, leading to $26 y=x+51$ (or equivalent) for $\left[\frac{3}{4}\right]$

Notes:

$5.1 "=0$ " needs to appear for full credit.

Question		Expected Answer/s	Max Mark	Additional Guidance
9		(cont)		

Notes:

$9.1 \cdot \bullet^{1} \bullet^{2}$ awarded wherever they appear, eg as part of an attempted induction proof.
9.2 Must include 10-1 to demonstrate application of understanding of how to process factorials. However, if this is satisfactorily demonstrated later, \bullet^{1} may then be awarded.
9.3 Although successfully completed in only a few cases, proof by induction may be attempted and marks allocated as above
9.4 Many attempts at induction are likely to include base case and assumptive hypothesis, but then candidates attempt to prove that $\binom{k+3}{3}-\binom{k+1}{3}=(k+1)^{2}$. Award max $\left[\frac{3}{4}\right]$ since this approach does not use ,6inductive hypothesis and therefore is not a proof by induction.
9.5 Where candidate starts at this line, all 3 marks may be awarded for being correct so far. However, the lack of working is likely to mean that an incorrect expression here may lose more than one mark.

Notes:

$10.1 \cdot{ }^{5}$ only available where working required to obtain value has not been eased. eg must have at least three terms and non-zero value resulting from $x=0$.
10.2 Where $2^{\text {nd }}$ application 'undoes' first and no further progress: $\max \left[\frac{1}{5}\right]$.
10.3 Where candidate asserts that $\int e^{4 x} d x=4 e^{4 x} \xrightarrow{\text { goes to }} 80 e^{8}-128 \approx 238,348$ or $e^{4 x} \xrightarrow{\text { goes to }} 2 e^{8}-2 \approx 5,959 \cdot 9$.. lose \bullet^{2} (wrong) and \bullet^{5} (eased). Award \bullet^{4} only if appropriate substitution to exact values appears.
10.4 For wrong signs in either/both "by parts" operations, award:

$$
\begin{aligned}
& u v+, u v+\max \left[\frac{3}{5}\right], \text { lose } \bullet^{1} \text { (wrong) and } \bullet^{5} \text { (eased). } \\
& u v+, u v-\max \left[\frac{3}{5}\right], \text { lose } \bullet^{1} \text { (wrong) and } \bullet^{5} \text { (eased). } \\
& u v^{-}, u v+\text {, leading to } \frac{23 e^{8}+1}{32} \max \left[\frac{4}{5}\right] \text { lose only } \bullet^{3} \text { (wrong). }
\end{aligned}
$$

10.5 Lose final mark when appropriated to $2328 \cdot 84 \ldots$ when no exact version.
10.6 Where final integration is subtracted, again leading to $\frac{1}{32}\left(23 e^{8}+1\right)$ lose \bullet^{3} or $\bullet^{4}\left[\frac{4}{5}\right]$;

$$
\frac{1}{32}\left(23 e^{8}-1\right) \text { lose } \bullet^{3} \cdot 5\left[\frac{3}{5}\right] \text { or } 2142 \cdot 59 \ldots \text { lose } \bullet^{3} \bullet^{5}\left[\frac{3}{5}\right] \text { or } 2142 \cdot 53 \ldots \text { lose } \bullet^{3} \bullet^{4} \bullet^{5}\left[\frac{2}{5}\right]
$$

Notes:

$11.1 \quad M_{2} M_{1}$: Incorrect order gives $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$ do not award \bullet^{3}
11.2 Incorrect order $M_{2} M_{1}$ leading to reflection in the line $y=-x$, award $\bullet{ }^{4}$
11.3 Accept, in isolation, correct description of single transformation, eg "reflection in line through $(0,0)$ at 45° to positive direction of the x-axis." Simply stating that " x - and y-coordinates swapped" not sufficient.

Notes:

12.1 This line may be omitted and awarded where correct form appears in next line.
12.2 In most cases, use of two different letters, ie two odd numbers not necessarily consecutive, leads to at most only \bullet^{2} and \bullet^{3} being awarded.

Notes:

14.1 For \bullet^{3} writing $-[f(x)-f(-x)]$ is not essential.
14.2 Award ${ }^{1}$ where statements appear at start of answer or as part of individual 'show thats'. Geometric description acceptable for \bullet^{1}, but needs to be watertight, eg function will be odd if unchanged by $180^{\circ} / \pi$ rotation about origin and function is even if unchanged by reflection in y-axis [or line $x=0$].
14.3 Accept $f(x)=\frac{1}{2}[g(x)+h(x)]$ as bad form without penalty.

	ues	Expected Answer/s	Max Mark	Additional Guidance
15	a	$\begin{array}{ll} u_{1}=i+2 j-k & \text { direction vector } \end{array}\left(\begin{array}{c} 1 \\ 2 \\ -1 \end{array}\right)$	2	$\bullet^{1} \& \bullet^{2}$ for vector equations ${ }^{1,2,3,6,8}$
15	b	If they intersect $\begin{array}{cc} 2+\lambda=-5-4 \mu & 4 \mu+\lambda=-7 \\ 4+2 \lambda=2+4 \mu & \frac{4 \mu-2 \lambda=2}{\lambda=-3} \\ 1-\lambda=5+\mu & \mu=-1 \\ & z_{2}=5+(-1) \\ z_{1}=1-(-3) & =4 \end{array}$ Since $z_{1}=z_{2}$, the lines intersect at $(-1,-2,4)$	4	- ${ }^{3}$ two equations for two parameters -4 two parameter solutions - 5 for checking third component in both equations. -6 point of intersection ${ }^{4}$,

Note:

15.1 If written in parametric or symmetric form award \bullet^{2} not \bullet^{1}. Including their statement at the start of $15 b$.
15.2 If direction vector and fixed point interchanged in one or both, award \bullet^{1}, but not \bullet^{2}.
15.3 Do not penalise use of same parameter at this stage.
15.4 Using same parameter for both equations, leading to $\left(\frac{3}{5}, \frac{6}{5}, \frac{12}{5}\right)$ or $(3,6,0) \max \left[\frac{1}{4}\right]$.
15.5 For $L_{1}: i+2 j-k, L_{2}:-4 i+4 j+k$ or equivalent, lose \bullet^{1} but \bullet^{2} available (repeated error.)
15.6 Do not penalise vectors written without underlines.
15.7 Acceptable form, without penalty: $\left(\begin{array}{c}2+\lambda \\ 4+2 \lambda \\ 1-\lambda\end{array}\right)$.

Question		Expected Answer/s	Max Mark	Additional Guidance
16.		(cont)		

Note:

16.1 For errors in the solution of the auxiliary equation leading to:

A: Complex conjugates, lose \bullet^{2}, but remainder all available, so $\max \left[\frac{9}{10}\right]$.
B: Two real roots, neither of which is 2 , lose \bullet^{2}, but \bullet^{3-8} all available, so max . $\left[\frac{7}{10}\right]$ Lose $\bullet^{2} \cdot 9 \cdot{ }^{10}$.
C: Two real roots, one of which is 2 , lose \bullet^{2}, but \bullet^{3-8} and \bullet^{10} all available, so max $\left[\frac{8}{10}\right]$. Lose $\bullet^{2} \bullet{ }^{9}$.
D: Ignores RHS completely, ie treats as homogeneous: max $\left[\frac{5}{10}\right]$. Only $\bullet^{1} \bullet^{2} \cdot \bullet^{3} \cdot{ }^{9} \bullet^{10}$ available $\left(\bullet^{8}\right.$ eased, so not available).
16.2 Omitting PI from general solution, lose \bullet^{7} and \bullet^{8}, but \bullet^{9} and \bullet^{10} both available, so max $\left[\frac{8}{10}\right]$.
16.3 May award \bullet^{7} at $\bullet{ }^{9}$ point if clear that CF and PI have been incorporated to produce GS differentiated.
16.4 May award ${ }^{10}$ if GS explicitly stated earlier and values of A and B are clearly identified.

Note:

17.1 Where candidate has NOT carried out division see COWAs (Commonly Occuring Wrong Answers) below.
17.2 Do not penalise slightly ambiguous use of " $+C$ " rather than introducing some new letter.
17.3 Do not penalise (legitimate) omission of |absolute value| symbols.
17.4 For incorrect answers, some evidence of provenance of values for A, B and C is required for the award of BOTH $\bullet{ }^{5}$ and $\bullet{ }^{6}$.
17.5 Check here that candidate has included $+C$ in PFs, since omission will usually lead to the correct answer or similar, as $C=0$. Omission of $+C$ means COWA D.

Question		Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$	Additional Guidance
17		COWAs (cont)		
	C	$\int 2+\frac{6 x^{2}-3 x+5}{(x-3)\left(x^{2}+1\right)} d x$		$\bullet{ }^{1}, \bullet^{2}$ available.
		$\frac{6 x^{2}-3 x+5}{(x-3)\left(x^{2}+1\right)}=\frac{A}{(x-3)}+\frac{B}{x^{2}+1}$		${ }^{3}{ }^{3}$ wrong form of PFs.
				- ${ }^{4}$ available. -5 available ${ }^{5}$. ${ }^{6}{ }^{6}$ not available.
		$\begin{aligned} \int 2+\frac{6 x^{2}-3 x+5}{(x-3)\left(x^{2}+1\right)} d x & =\int 2+\frac{5}{x-3} d x \\ & =2 x+5 \ln \|x-3\|+k \end{aligned}$		- ${ }^{7} \quad$ available ${ }^{3}$. - ${ }^{8}$ available. - ${ }^{9}$ not available. Max $\left[\frac{6}{9}\right]$
	C_{2}	C without division, leading to: $5 \ln \|x-3\|+2 \tan ^{-1} x+C$		$\text { Only } \cdot 5 \cdot{ }^{5} \cdot{ }^{8} \text { available } \operatorname{Max}\left[\frac{3}{9}\right]$
	D	$\begin{aligned} & \frac{6 x^{2}-3 x+5}{(x-3)\left(x^{2}+1\right)}=\frac{A}{(x-3)}+\frac{B x}{x^{2}+1} \\ & \quad 6 x^{2}-3 x+5=A\left(x^{2}+1\right)+B(x-3) x \\ & x=0 \quad 5=A \\ & x=3 \quad 50=10 A \\ & x=1 \text { (say) } \quad 8=2 A-2 B \Rightarrow B=1 \end{aligned}$		D with division This will usually lead to the correct answer or similar, but no consideration of $+C$ leading to $C=0$. Therefore losing \bullet^{3} and \bullet^{6}, so Max $\left[\frac{7}{9}\right]$
	D_{2}	D without division, leading to a variety of answers.		$\text { Only } \cdot 5 \cdot{ }^{7} \cdot{ }^{8} \text { available Max }\left[\frac{3}{9}\right]$

	ues	Expected Answer/s	Max Mark	Additional Guidance
18	b	$\begin{aligned} & \frac{d h}{d t}=-0 \cdot 3 \mathrm{~cm} / \mathrm{hr} \text { when } h=144 \\ & -0 \cdot 3=-\frac{k}{A} \sqrt{144} \\ & \frac{k}{A}=\frac{1}{40} \therefore A=40 k \\ & \frac{d h}{d t}=\frac{-k}{A} \sqrt{h} \\ & \int \frac{1}{\sqrt{h}} d h=\int \frac{-k}{A} d t \quad \text { OR } \quad \int \frac{1}{\sqrt{h}} d h=\int-\frac{1}{40} d t \\ & 2 \sqrt{h}=\frac{-k}{A} t+c \\ & 2 \sqrt{144}=c \\ & 2 \sqrt{h}=\frac{-k}{A} t+24 \\ & \sqrt{h}=\frac{-k}{2 A} t+12 \\ & h=\left(\frac{-k}{2 A} t+12\right)^{2} \\ & h=\left(\frac{-1}{80} t+12\right)^{2} \end{aligned}$	4	- 3 Subs in $\frac{d h}{d t}=-0.3$ and $h=144$. Award this mark if substitution appears in part (d). - ${ }^{4}$ separating variables ${ }^{3}$. - 5 integrating correctly. - ${ }^{6}$ evaluating constant of integration and completion

	ues	Expected Answer/s	$\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$	Additional Guidance
18	c	$\begin{aligned} & 0=\left(-\frac{1}{80} t+12\right)^{2} \\ & -\frac{1}{80} t+12=0 \\ & t=960 \text { hours } \\ & \text { number days }=\frac{960}{24}=40 \text { days } \end{aligned}$	2	- 7 knowing to set correct expression to zero - ${ }^{8}$ Processing to obtain number of days ${ }^{4}$
18	d	$\begin{aligned} & A=400 \pi \\ & \frac{k}{A}=\frac{1}{40} \\ & k=10 \pi \\ & h=\left(\frac{-1}{80} \cdot 96+12\right)^{2} \\ & \frac{d V}{d t}=-108 \pi \end{aligned}$ \therefore Rate to vegetation is $\mathbf{1 0 8} \boldsymbol{\pi} \mathrm{cm}^{3} / \mathrm{hr}$	3	- ${ }^{9} \quad$ for finding k. - ${ }^{10}$ obtaining h or \sqrt{h} - ${ }^{11}$ processing to answer with interpretation.

Notes:

18.1 $A \frac{d V}{d t}=119 \cdot 5 \pi \mathrm{~cm}^{3} / \mathrm{hr}$ which comes from taking $t=4$. Do not award \bullet.
18.2 Using $h=144$ in part d leading to 377, do not award \bullet^{10} or \bullet^{11}.
18.3 Do not penalise omission of integration symbols.
18.4 Where candidate has used 144 instead of 0 initially, \bullet^{7} lost, but \bullet^{8} available if resulting quadratic solved correctly to obtain both $t=0$ and $t=1920$, discarding $t=0$ answer and converting to 80 days.

