

2015 Mathematics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Mathematics Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Principal Assessor.
- (b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Mathematics Advanced Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

General Marking Principles

These principles describe the approach taken when marking Advanced Higher Mathematics papers. For more detailed guidance please refer to the detailed Marking Instructions.

- 1 The main principle is to give credit for the skills demonstrated and the criteria met. Failure to have a correct method may not preclude a candidate gaining credit for their solution.
- 2 The answer to one part of a question, even if incorrect, can be accepted as a basis for subsequent dependent parts of the question.
- **3** The following are not penalised:
 - working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
 - legitimate variation in numerical values/algebraic expressions.
- 4 Full credit will only be given where the solution contains appropriate working. Where the correct answer might be obtained by inspection or mentally, credit may be given.
- 5 Sometimes the method to be used in a particular question is explicitly stated; no credit will be given where a candidate obtains the correct answer by an alternative method.
- 6 Where the method to be used in a particular question is not explicitly stated in the question paper, full credit is available for an alternative valid method. (Some likely alternatives are included but these should not be assumed to be the only acceptable ones.)

In the detailed Marking Instructions which follow, marks are shown alongside the line for which they are awarded. When marking, no comments at all should be made on the script. The total mark for each question should appear in one of the right-hand margins. The following codes should be used where applicable:

 \checkmark - correct; X – wrong; working underlined – wrong;

tickcross – mark(s) awarded for follow-through from previous answer;

^ ^ - mark(s) lost through omission of essential working or incomplete answer;

wavy or broken underline – bad form, but not penalised.

Part Two: Marking Instructions for each Question

Question		n	Expected Answer/s	Max	Additional Guidance
				Mark	
1			$= {}^{5}C_{0}\left(\frac{x^{2}}{3}\right)^{5} + {}^{5}C_{1}\left(\frac{x^{2}}{3}\right)^{4}\left(\frac{-2}{x}\right)^{1} + {}^{5}C_{2}\left(\frac{x^{2}}{3}\right)^{3}\left(\frac{-2}{x}\right)^{2}$ $+ {}^{5}C_{3}\left(\frac{x^{2}}{3}\right)^{2}\left(\frac{-2}{x}\right)^{3} + {}^{5}C_{4}\left(\frac{x^{2}}{3}\right)\left(\frac{-2}{x}\right)^{4} + {}^{5}C_{5}\left(\frac{-2}{x}\right)^{5}$ $= \frac{x^{10}}{243} - \frac{10x^{7}}{81} + \frac{40x^{4}}{27} - \frac{80x}{9} + \frac{80}{3x^{2}} - \frac{32}{x^{5}}$	4	 •¹ correct unsimplified expansion •² fully simplified powers of <i>x</i> •³ powers of 3 and binomial coefficients. OR powers of -2 correct. •⁴ Completes and simplifies correctly.
Not	tes:				
1.1	Ac	cept	negative powers of x.		
1.2	Co	effic	ients must be fully processed to simplified fractions and	d whole	numbers.

Question		tion	Expected Answer/s	Max Mark		Additional Guidance
2	a		$\frac{dy}{dx} = \frac{5(x^2+2)-2x(5x+1)}{(x^2+2)^2}$ $= \frac{-5x^2-2x+10}{(x^2+2)^2}$	3	• ¹ • ² • ³	For using quotient rule and correct denominator ³ . correct differentiation for both parts of numerator simplified form ² .
2	Ь		$f'(x) = 2e^{2x} \sin^2 3x + e^{2x} \cdot 2 \cdot 3 \cdot \sin 3x \cos 3x$ $= 2e^{2x} \sin 3x (\sin 3x + 3\cos 3x)$ or $e^{2x} (2\sin^2 3x + 3\sin 6x)$	3	• ⁴ • ⁵ • ⁶	evidence of using product rule first term second term
No 2.1	tes: <u>A</u> P 2 <u>4</u> 7	Alterna Product y = (5x) $\frac{dy}{dx} = -1$	$\frac{\text{tive Method}}{x \text{ rule}}$ (x+1)(x ² +2) ⁻¹ (5x+1)(x ² +2) ⁻² .2x+5(x ² +2) ⁻¹		• ¹	for evidence of using product rule <i>and</i> one term correct. for second term
2.2 2.3 2.4	= V N V	$= \frac{-5x^2}{(x)}$ Where a numera Where a $\frac{d}{dx} \left[(5x) \right]$	$\frac{-2x+10}{x^2+2}$ a candidate has a wrong, but factorisable expression in the tor, factorisation is not required for award of this mark. terms are the wrong way round, lose \bullet^1 $(x+1)(x^2+2)$]= $15x^2+2x=10$: award $\begin{bmatrix} 0\\3 \end{bmatrix}$.	ne	•3	simplified fraction

Q	uestion	Expected An	swer/s	Max Mark		Additional Guidance
3		$s_{20} = 320 = \frac{20}{2} (2a + 19d)$ $\Rightarrow 2a + 19d = 32$		5	\bullet^1 f \bullet^2 f	for correct substitution into formula ¹ . for correct substitution into formula ¹ .
		$u_{21} = 37 = a + 20d$	$a + 20d = 37$ $\underline{2a + 40d} = 74$ $21d = 42$			
			d = 2 $a = -3$		• ³	d^1
		$s_{10} = \frac{10}{2} (2a + 9d)$			•	a
		= 60			• ⁵	<i>S</i> ₁₀
		$a + 20d = 37$ $s_{21} = 320 + 37 = 357$			• ¹	a + 20d = 37
		$357 = \frac{21}{2}(a+37)$ $\Rightarrow a = -3$			• ² 1	for correct substitution into formula ¹ .
		d = 2 $s_{10} = 5(-6+18) = 60$			• ⁴ 0	d s_{10}
No	tes:	$\frac{1}{1}$	thout availait statement	of concre	1 form	aulaa Hawayaa simala
3.1	Accept c	offect equations for \bullet and \bullet wi	mout explicit statement	of genera	u iorn	nuiae. However, simply

stating values for a and d, is not sufficient, so do not award \bullet^1 or \bullet^2 , ie working required.

3.2 Candidates can also obtain two simultaneous equations using S_{20} and S_{21} formulae. One mark each, then follow the above for final 3 marks.

Question		n Expected Answer/s	Max Mark	Additional Guidance			
4		$x^{4} + y^{4} + 9x - 6y = 14$ $4x^{3} + 4y^{3} \frac{dy}{dx} + 9 - 6 \frac{dy}{dx} = 0$ $\therefore 4(1^{3}) + 4(2^{3}) \frac{dy}{dx} + 9 - 6 \frac{dy}{dx} = 0$	4	• ¹ x terms and constant ³ . • ² y terms			
		$\therefore \frac{dy}{dx} = \frac{-1}{2}$ $y - 2 = -\frac{1}{2}(x - 1)$ eqn.tangent: $2y = -x + 5$ or $y = -\frac{1}{2}x + \frac{5}{2}$ or $2y + x - 5 = 0$ OR $\frac{dy}{dx} = \frac{-4x^3 - 9}{4y^3 - 6} = \frac{4x^3 + 9}{6 - 4y^3}$ at $A(1, 2)\frac{dy}{dx} = \frac{4 + 9}{6 - 32} = \frac{-13}{26} = \frac{-1}{2}$		 ³ gradient². ⁴ equation¹. 			
No 4.1 4.2 4.3	Notes: 4.1 Published form would have \bullet^4 at expanded form, not as marked. 4.2 Rearrangement and explicit statement of $\frac{dy}{dx}$ not required for full marks. 4.3 Where candidate asserts that $\frac{d}{dx}(14) = 14$, \bullet^1 not given, but \bullet^2 , \bullet^3 and \bullet^4 all possible, leading to $26y = x + 51$ (or equivalent) for $\left[\frac{3}{4}\right]$						
5		Singular when det A = 0 $p \begin{vmatrix} p & 1 \\ -1 & -1 \end{vmatrix} - 2 \begin{vmatrix} 3 & 1 \\ 0 & -1 \end{vmatrix} + 0 \begin{vmatrix} 3 & p \\ 0 & -1 \end{vmatrix} = 0$ $p (-p+1) - 2 (-3) = 0$ $p^{2} - p - 6 = 0$ $(-2)(-2) = 0$	4	 ¹ evidence of any valid method for obtaining det<i>A</i> and setting = 0¹. ² expansion or equivalent method by first row ³ for polynomial 			
No 5 1	tes: "= 0"	(p-3)(p+2)=0 $p=3 or p=-2$		• ⁴ solutions (both)			

Q	uestion	Expected Answer/s	Max Mark	Additional Guidance				
6		$\ln y = \ln 3^{x^2}$ $\ln y = x^2 \ln 3$	3	• ¹ evidence of taking logs.				
		$\frac{1}{y}\frac{dy}{dx} = 2x\ln 3$ $\frac{dy}{dx} = 2x\ln 3 \cdot 3^{x^2}$		• ² for differentiating correctly. • ³ for $\frac{dy}{dx}$ in terms of x and y.				
		OR $u = x^2$ $\therefore y = 3^u$ $\therefore \frac{dy}{du} = 3^u \ln 3$		 ¹ correct substitution into original equation. ² for differentiating correctly. 				
		$\therefore \frac{dy}{dx} = 3^{x^2} \ln 3.2x$ OR		• ³ for $\frac{dy}{dx}$ in terms of x and y.				
		$\ln y = x^2 \ln 3$ $e^{\ln y} = e^{x^2 \ln 3}$		• ¹ evidence of taking logs.				
		$y = \left(e^{x^2}\right)^{\ln 3}$		• ² for rearranging correctly.				
		$\frac{dy}{dx} = 2x\ln 3 \cdot e^{x^2\ln 3}$		• for differentiating to obtain in terms of x and y .				
No 6.1	Notes: 6.1 Accept $\frac{dy}{dx} = \ln 3^{2x} \cdot 3^{x^2}$							

Q	uestion	Expected Answer/s	Max Mark		Additional Guidance
7		$3066 = 713 \times 4 + 214$ $713 = 214 \times 3 + 71$ $214 = 71 \times 3 + 1$	4	• ¹ • ²	starting correctly reach GCD
		$1 = 214 - 71 \times 3$ = 214 - 3(713 - 214 × 3) = 214 × 10 - 713 × 3 = (3066 - 713 × 4) × 10 - 713 × 3 = 3066 × 10 - 713 × 43 p = 10 q = -43		• ³	equates GCD from \bullet^2 and evidence of substitution obtains values of <i>p</i> and <i>q</i> .
No 7.1 7.2	tes: GCD doe <i>p</i> and <i>q n</i>	es not need to be explicitly stated. <i>nust</i> be explicitly stated			
8		$\frac{dx}{dt} = \frac{1}{2}(t+1)^{-\frac{1}{2}}$ $\frac{dy}{dt} = -\operatorname{cosec}^{2}t$ $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$ $= -\operatorname{cosec}^{2}t \times 2\sqrt{t+1}$ $= -2\sqrt{t+1} \cdot \operatorname{cosec}^{2}t$	3	• ¹ • ²	obtain $\frac{dx}{dt}$ obtain $\frac{dy}{dt}^{-1}$ obtain $\frac{dy}{dx}$ in terms of <i>t</i> in any correct form.
No 8.1	tes: –cosec	^{2}t or equivalent.	<u> </u>	<u> </u>	

Q	uestion	Expected Answer/s	Max Mark	Additional Guidance
9		$ \begin{pmatrix} n+2\\3 \end{pmatrix} - \begin{pmatrix} n\\3 \end{pmatrix} $ $ = \frac{(n+2)!}{(n+2-3)! 3!} - \frac{n!}{(n-3)! 3!} $ $ = \frac{(n+2)(n+1)n(n-1)!}{(n-1)! 3!} - \frac{n(n-1)(n-2)(n-3)!}{(n-3)! 3!} $ $ = \frac{(n+2)(n+1)n}{3!} - \frac{n(n-1)(n-2)}{3!} $	4	 ¹ demonstrates understanding of factorial form <i>algebraically</i>¹. ² using property <i>n</i>! = <i>n</i>(<i>n</i>-1)!¹ ³ correctly expressing with common denominator OR as a single fraction^{1,5}.
		$= \frac{n}{3!} [(n+2)(n+1) - (n-1)(n-2)]^*$ = $\frac{n}{6} (n^2 + 3n + 2 - n^2 + 3n - 2)$ = $\frac{n}{6} (6n)$ = n^2 as required OR LHS = $10 - 1 = 9$ RHS = 9. So, true for $n = 3$.		• ⁴ simplification to answer, line * (or equivalent) essential.
		ie $\binom{k+2}{3} - \binom{k}{3} = k^{2}$ $\binom{k+3}{3} - \binom{k+1}{3}$ $= \binom{k+2}{2} + \binom{k+2}{3} - \binom{k}{2} - \binom{k}{3}$		• ¹ Base case <i>and</i> assumptive hypothesis stated. • ³ Using identity $\binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1}$ in context.
		$= k^{2} + \binom{k+2}{2} - \binom{k}{2}$ $= k^{2} + \frac{(k+2)(k+1)}{2} - \frac{(k)(k-1)}{2}$ $= k^{2} + 2k + 1 = (k+1)^{2}$		 ² Using property that n! = n(n - 1)! ⁴ Completes proof, including accurate induction statement.

Owertier			3.6				
Q	lestion	Expected Answer/s	Max	Additional Guidance			
			Mark				
9		(cont)					
Not	es:						
9.1	$\bullet^1 \bullet^2$ a	warded wherever they appear, eg as part of an attempted ind	luction pr	oof.			
9.2	Must in	clude 10-1 to demonstrate application of understanding of he	ow to pro	cess factorials. However, if this			
	is satisfa	ctorily demonstrated later, \bullet^1 may then be awarded.					
9.3	Althoug	h successfully completed in only a few cases, proof by indu	ction may	y be attempted and marks			
	allocate	l as above.					
9.4	Many a	tempts at induction are likely to include base case and assur	nptive hy	pothesis, but then candidates			
	attempt to prove that $\binom{k+3}{3} - \binom{k+1}{3} = (k+1)^2$. Award max $\begin{bmatrix} \frac{3}{4} \end{bmatrix}$ since this approach does not use						
	,6inductive hypothesis and therefore is not a proof by induction.						
9.5	Where of	andidate starts at this line, all 3 marks may be awarded for h	being corr	rect so far. However, the lack of			
	working	is likely to mean that an incorrect expression here may lose	e more tha	an one mark.			

Question Expected Answer/s Max Additional Gu Mark Mark					
10		$\int x^2 e^{4x} dx = \frac{1}{4} x^2 e^{4x} - \int \frac{1}{2} x e^{4x} dx$ $= \frac{1}{4} x^2 e^{4x} - \frac{1}{8} x e^{4x} + \int \frac{1}{8} e^{4x} dx$ $= \frac{1}{4} x^2 e^{4x} - \frac{1}{8} x e^{4x} + \frac{1}{32} e^{4x}$ $\int_0^2 x^2 e^{4x} = \left[\frac{1}{4} \cdot 4 \cdot e^8 - \frac{1}{8} \cdot 2 e^8 + \frac{1}{32} e^8\right] - \left[\frac{1}{32}\right]$ $= e^8 \left(1 - \frac{1}{4} + \frac{1}{32}\right) - \frac{1}{32}$	5	 ¹ knowing and using integration by parts ² appropriate choice for <i>u</i> and <i>v'</i> and correct application ³ Second application^{2,4,6}. ⁴ final integral and substitute limits. 	
		$=\frac{25}{32}e^{8}-\frac{1}{32} \text{ or } \frac{1}{32}\left(25e^{8}-1\right)$		• ⁵ exact value ^{1,5,6} .	
Notes: 10.1 • ⁵ only available where working required to obtain value has not been eased. eg must have at least three terms and non-zero value resulting from $x = 0$. 10.2 Where 2 nd application 'undoes' first and no further progress: max $\left[\frac{1}{5}\right]$. 10.3 Where candidate asserts that $\int e^{4x} dx = 4e^{4x} - \frac{goes to}{2} \otimes 80e^8 - 128 \approx 238,348$ or $e^{4x} - \frac{goes to}{2} 2e^8 - 2 \approx 5,959 \cdot 9$. lose • ² (wrong) and • ⁵ (eased). Award • ⁴ only if appropriate substitution to exact values appears. 10.4 For wrong signs in either/both "by parts" operations, award: $uv + , uv + max \left[\frac{3}{5}\right]$, lose • ¹ (wrong) and • ⁵ (eased). $uv + , uv - max \left[\frac{3}{5}\right]$, lose • ¹ (wrong) and • ⁵ (eased). $uv - , uv +$, leading to $\frac{23e^8 + 1}{32} max \left[\frac{4}{5}\right]$ lose only • ³ (wrong). 10.5 Lose final mark when appropriated to 2328 · 84 when no exact version. 10.6 Where final integration is subtracted, again leading to $\frac{1}{32}(23e^8 + 1)$ lose • ³ • • ⁴ $\left[\frac{4}{5}\right]$; $\frac{1}{32}(23e^8 - 1) \log *^3 •^5 \left[\frac{3}{5}\right]$ or 2142 · 59lose • ³ • ⁵ $\left[\frac{3}{5}\right]$ or 2142 · 53 lose • ³ • ⁴ • ⁵ $\left[\frac{2}{5}\right]$.					

Q	uestio	n	Expected Answer/s	Max Mark		Additional Guidance	
11			$M_{1} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ $M_{2} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ $M_{3} = M_{1}M_{2} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ $= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Reflection in the line $y = x$	4	• ¹ • ² • ³	for M_1 for M_2 . for M_3 . ¹ correct interpretation ³ .	
Note 11.1 11.2 11.3	Notes: 11.1 M_2M_1 : Incorrect order gives $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ do not award \bullet^3 11.2 Incorrect order M_2M_1 leading to reflection in the line $y = -x$, award \bullet^4 11.3 Accept, in isolation, correct description of single transformation, eg "reflection in line through (0, 0) at 45° to positive direction of the <i>x</i> -axis." Simply stating that " <i>x</i> - and <i>y</i> -coordinates swapped" not sufficient.						
12]	Let numbers be $2n - 1$, $2n + 1$, $n \in \aleph$	3	•1	correct form for any two consecutive odd numbers 1,2 .	
			$= (4n^{2} + 4n + 1) - (4n^{2} - 4n + 1)$		•2	correct expressions squared out.	
			= 8n which is divisible by 8		•3	multiple of 8 and communication.	
Note 12.1 12.2	es: This In most	line ost c	may be omitted and awarded where correct form appears cases, use of two different letters, ie two odd numbers not $y \bullet^2$ and \bullet^3 being awarded.	in next li necessari	ine. Iy c	onsecutive, leads to at	

Q	uest	ion	Expected Answer/s	Max Mark	Additional Guidance
13	а		$z^{2} = (x + iy)^{2}$ $x^{2} + 2ixy - y^{2} = x + iy ^{2} - 4$ $x^{2} + 2ixy - y^{2} = x^{2} + y^{2} - 4$ $2ixy - y^{2} = y^{2} - 4$	3	• ¹ writing in form $x + iy^3$ and either LHS or RHS correct.
			$2y^{2} - 2ixy - 4 = 0$ $2(y^{2} - 2) = 0, y = \pm\sqrt{2},$ 2ixy = 0, x = 0 $z = \pm\sqrt{2}i$		 equating real parts and solving to obtain y² equating imaginary parts and x = 0
13	b		$x^{2} + 2ixy - y^{2} = i(x^{2} + y^{2}) - 4i$ $x^{2} - y^{2} + 2ixy = (x^{2} + y^{2} - 4)i$ $2xy = x^{2} + y^{2} - 4, x^{2} - y^{2} = 0$ $x^{2} + y^{2} - 2xy = 4$ $(x - y)^{2} = 4$ $x - y = \pm 2, y = \pm x$ leading to $y = -x$ which gives $z = 1 - i$ and $z = -1 + i$.	4	 ⁴ correct expansion in <i>x</i> and <i>y</i>. ⁵ equating real and imaginary parts ⁴. ⁶ two equations¹. ⁷ solutions.
No 13.	tes: 1 O	r obta	in one equation and substitute into other.	L	1

- 13.2 Alternatively for two correct equations equating both real and imaginary parts, without further progress, award \bullet^2 .
- 13.3 Accept use of a and b (ie a + ib) or other letters, without penalty if used consistently.
- 13.4 Classify making same mistake in part (b) as in part (a) as a repeated error, so only penalised if eased.

Question		Expected Answer/s	Max Mark	Additional Guidance
14		g(x) = f(x) + f(-x) g(-x) = f(-x) + f(x) = f(x) + f(-x) = g(x)	4	• ¹ communicating knowledge of an even and an odd function ² .
		$\therefore \text{ since } g(-x) = g(x) \text{ function is even.}$ $h(x) = f(x) - f(-x)$ $h(-x) = f(-x) - f(x)$ $= -f(x) + f(-x)$ $= -\left\lceil f(x) - f(-x) \right\rceil$		• ² showing that $g(x)$ is even.
		= -h(x) ∴ since $h(-x) = -h(x)$ function is odd. g(x) + h(x) = 2f(x) by adding initial equations		• ³ showing that $h(x)$ is odd.
		$f(x) = \frac{1}{2}g(x) + \frac{1}{2}h(x)$ ∴ Since g even and h odd, $f(x)$ is the sum of an even and an odd functions.		• ⁴ correct expression <i>and</i> conclusion.
No	tes:			
14. 14. 14.	 For • 'w Award descript 180° / n Accept 	writing $-\lfloor f(x) - f(-x) \rfloor$ is not essential. • ¹ where statements appear at start of answer or as part of in tion acceptable for • ¹ , but needs to be watertight, eg function $f(x) = \frac{1}{2}[g(x) + h(x)]$ as bad form without penalty.	ndividual on will be y reflecti	show thats'. Geometric odd if unchanged by on in y-axis [or line $x = 0$].

Q	uestio	n	Expected Answer/s	Max Mark	Additional Guidance
15	a		$u_{1} = i + 2j - k \qquad \text{direction vector} \qquad \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ $u_{2} = -4i + 4j + k \qquad \text{direction vector} \qquad \begin{pmatrix} -4 \\ 4 \\ 1 \end{pmatrix}$	2	
			$v_{1} = \begin{pmatrix} 2\\4\\1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2\\-1 \end{pmatrix}, v_{2} = \begin{pmatrix} -5\\2\\5 \end{pmatrix} + \mu \begin{pmatrix} -4\\4\\1 \end{pmatrix}$		• ¹ & • ² for vector equations ^{1,2,3,6,8} .
15	b		If they intersect	4	
			$2 + \lambda = -5 - 4\mu \qquad 4\mu + \lambda = -7$		• ³ two equations for two parameters
			$4+2\lambda = 2+4\mu \qquad \underline{4\mu-2\lambda=2} \\ 1-\lambda = 5+\mu \qquad \lambda = -3$		• ⁴ two parameter solutions
			$\mu = -1$ $z_1 = 1 - (-3)$ $z_2 = 5 + (-1)$ $= 4$ $= 4$		• ⁵ for checking third component in both equations.
			Since $z_1 = z_2$, the lines intersect at $(-1, -2, 4)$		• ⁶ point of intersection ^{4,} .

Question	Expected Answer/s	Max Mark	Additional Guidance		
15	$ \begin{array}{c c} u_1 \times u_2 \text{ to get normal} \\ \hline i & j & k \\ 1 & 2 & -1 \\ -4 & 4 & 1 \\ \end{array} \text{ or } \begin{array}{c c} i & j & i & j \\ 1 & 2 & -1 & 1 & 2 \\ -4 & 4 & 1 & -4 & 4 \\ \hline -4 & 4 & 1 & -4 & 4 \\ \end{array} $ $= i(2+4) - j(1-4) + k(4+8) $	4	 ⁷ correct strategy to find normal. ⁸ correct processing to 		
	= 6i + 3j + 12k $6x + 3y + 12z = \begin{pmatrix} 6\\3\\12 \end{pmatrix} \cdot \begin{pmatrix} \text{Point of}\\ \text{intersection} \end{pmatrix}$ = 36 So equation of plane is $6x + 3y + 12z = 36$ OR $2x + y + 4z = 12$		 correct processing to obtain vector. ⁹ substituting normal vector into an equation of a plane. May also use either of the given points. ¹⁰ finding correct value for constant and correct equation. 		
Note: 15.1 If written in parametric or symmetric form award \bullet^2 not \bullet^1 . Including their statement at the start of 15b. 15.2 If direction vector and fixed point interchanged in one or both, award \bullet^1 , but not \bullet^2 . 15.3 Do not penalise use of same parameter at this stage. 15.4 Using same parameter for both equations, leading to $\left(\frac{3}{5}, \frac{6}{5}, \frac{12}{5}\right)$ or $(3, 6, 0) \max\left[\frac{1}{4}\right]$. 15.5 For $L_1: i+2j-k, L_2: -4i+4j+k$ or equivalent, lose \bullet^1 but \bullet^2 available (repeated error.) 15.6 Do not penalise vectors written without underlines. 15.7 Acceptable form, without penalty: $\begin{pmatrix} 2+\lambda \\ 4+2\lambda \\ 1-\lambda \end{pmatrix}$.					

Question		n	Expected Answer/s	Max Mark	1	Additional Guidance
16			$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + 10y = 3e^{2x}$ $m^2 + 2m + 10 = 0$ $m = -2 \pm \sqrt{4 - 4.1.10} = -1 \pm 2i$	10	•1	correct auxillary equation.
			$m = \frac{1}{2} = -1 \pm 3i$ $y = e^{-x} (A\cos 3x + B\sin 3x) \text{ OR } y = ae^{(-1\pm 3i)x} + Be^{(-1-3i)x}$	x	•3	appropriate complementary function.
			try $y = Ce^{2x}$ $\frac{dy}{dx} = 2Ce^{2x}$ $\frac{d^2y}{dx^2} = 4Ce^{2x}$		•4	particular integral
			$\frac{1}{dx^2} = 4Ce^{2x}$ $4Ce^{2x} + 4Ce^{2x} + 10Ce^{2x} = 3e^{2x}$		• ⁵	for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$
			$C = -\frac{1}{6}$ y = Ae ^{-x} cos 3x + Be ^{-x} sin 3x + $\frac{1}{6}e^{2x}$		•7	combine CF and PI for general solution ³ .
			$1 = A + \frac{1}{6} , A = \frac{5}{6}$ $\frac{dy}{dx} = -Ae^{-x}\cos 3x - 3Ae^{-x}\sin 3x - Be^{-x}\sin 3x + 3Be^{-x}\cos 3x - 3Ae^{-x}\sin 3x - Be^{-x}\cos 3x - 3Ae^{-x}\cos 3x - 3Ae^{-x}\sin 3x - Be^{-x}\cos 3x - 3Ae^{-x}\cos 3x -$	$s_3x + \frac{1}{2}e^{2x}$	•8	value of <i>A</i> .
			$dx = -(A) + 3B + \frac{1}{3}, \frac{5}{6} - \frac{1}{3} = 3B, B = \frac{1}{6}$	3	•9	for differentiating correctly ³ .
			So particular solution is: $y = \frac{5}{6}e^{-x}\cos 3x + \frac{1}{6}e^{-x}\sin 3x + \frac{1}{6}e^{-x}$	$\frac{1}{5}e^{2x}$	• ¹⁰	value of <i>B</i> and statement of final answer ⁴ .

Question		n	Expected Answer/s	Max	Additional Guidance
X				Mark	Guidente Guidentee
16.			(cont)		
Note	:				
16.1	For	erro	ors in the solution of the auxiliary equation leading to:		
	A: (Com	pplex conjugates, lose \bullet^2 , but remainder all available, so n	$\max\left[\frac{9}{10}\right].$	
	B: 1	Гwo	real roots, neither of which is 2, lose \bullet^2 , but \bullet^{3-8} all avail	able, so m	ax $\left[\frac{7}{10}\right]$ Lose $\bullet^2 \bullet^9 \bullet^{10}$.
	C: 7	Гwo	real roots, one of which is 2, lose \bullet^2 , but \bullet^{3-8} and \bullet^{10} all a	wailable, s	o max $\left[\frac{8}{10}\right]$. Lose $\bullet^2 \bullet^9$.
	D: I	[gno	res RHS completely, ie treats as homogeneous: max $\left[\frac{5}{10}\right]$	$\left]$. Only $\bullet^1 \bullet$	$\bullet^{2} \bullet^{3} \bullet^{9} \bullet^{10}$ available (\bullet^{8} eased, so
	not	avai	lable).		
16.2	Om	ittin	g PI from general solution, lose \bullet^7 and \bullet^8 , but \bullet^9 and \bullet^{10} by	oth availat	ble, so max $\left[\frac{8}{10}\right]$.
16.3 16.4	Ma Ma	y aw y aw	vard \bullet^7 at \bullet^9 point if clear that CF and PI have been incorvard \bullet^{10} if GS explicitly stated earlier <i>and</i> values of A and	porated to d <i>B</i> are cle	produce GS differentiated. arly identified.

Question	Expected Answer/s	Max Additional Guidance Mark	
17	$x^{3} - 3x^{2} + x - 3\overline{\smash{\big)}}2x^{3} + 0x^{2} - x - 1}$ $\frac{2x^{3} - 6x^{2} + 2x - 6}{$	9	 ¹ for knowing to divide and starting division ² correct division¹.
	$= \int 2 + \frac{A}{x-3} + \frac{Bx+C}{x^2+1} dx$ $6x^2 - 3x + 5 = A(x^2+1) + (Bx+C)(x-3)$ $x = 0 \qquad 5 = A - 3C$ $x = 3 \qquad 50 = 10A \implies A = 5$ C = 0 $x = 1 \qquad 8 = 2A - 2B - 2C$ $8 = 10 - 2B \implies B = 1$		 •³ for correct form of PFs⁵. •⁴ creating correct equation •⁵ for any two values^{,4}. •⁶ for third value⁴.
Note: 17.1 Where below.	$\int \frac{2x^3 - x - 1}{(x - 3)(x^2 + 1)} dx = \int 2 + \frac{5}{x - 3} + \frac{x}{x^2 + 1} dx$ $= 2x + 5\ln x - 3 + \frac{1}{2}\ln(x^2 + 1) + k$ candidate has NOT carried out division see COWAs (Constrained on the second	ommonly (⁷ for putting into integral <i>and</i> any one term correctly integrated³. ⁸ for any second term. ⁹ for third term and + k.² Decuring Wrong Answers)

- 17.3 Do not penalise (legitimate) omission of |absolute value| symbols.
- 17.4 For incorrect answers, some evidence of provenance of values for A, B and C is required for the award of BOTH \bullet^5 and \bullet^6 .
- 17.5 Check here that candidate has included +*C* in PFs, since omission will usually lead to the <u>correct</u> answer or similar, as C = 0. Omission of +*C* means COWA D.

Question		1	Expected Answer/s	Max Mark	Additional Guidance
17			COWAs	9	
			If don't ÷		
		A	$\frac{2x^3 - x - 1}{(x - 3)(x^2 + 1)} = \frac{A}{x - 3} + \frac{Bx + C}{x^2 + 1}$		• ¹ ,• ² not available. • ³ available.
			$2x^{3} - x - 1 = A(x^{2} + 1) + (x - 3)(Bx + C)$		• ⁴ not available.
			x = 3 50 = 10A A = 5 x = 0 -1 = A - 3C C = 2 x = 1 0 - 2A - 2B - 2C		• ⁵ available ⁴ .
			x = 1 $0 = 2A - 2B - 2C0 = 10 - 2B - 4$ $B = 3WRONG$		• ⁶ available ⁵ .
			$\int \frac{2x^3 - x - 1}{(x - 3)(x^2 + 1)} = \int \frac{5}{x - 3} + \frac{3x + 2}{x^2 + 1}$		
			$= 5\ln x-3 + \int \left(\frac{3x}{x^2+1} + \frac{2}{x^2+1}\right) dx$		
			$= 5\ln x-3 + \frac{3}{2}\ln x^{2}+1 + 2\tan^{-1}x + k$		• ⁷ available ³ .
					• available. • available. Max $\left[\frac{6}{9}\right]$.
		B	If do ÷ then forget to put "2 +"		Lose \bullet^7 . Max $\left[\frac{8}{9}\right]$.

Question		Expected Answer/s	Max Mark	Additional Guidance
17	C	COWAs (cont) $\int 2 + \frac{6x^2 - 3x + 5}{(x - 3)(x^2 + 1)} dx$ $\frac{6x^2 - 3x + 5}{(x - 3)(x^2 + 1)} = \frac{A}{(x - 3)} + \frac{B}{x^2 + 1}$ $6x^2 - 3x + 5 = A(x^2 + 1) + B(x - 3)$ $x = 3 \qquad 50 = 10A \Longrightarrow A = 5$ $x = 0 \qquad 5 = A - 3B \Longrightarrow B = 0$	Mark	 ¹, ² available. ³ wrong form of PFs. ⁴ available. ⁵ available⁵. ⁶ not available.
	C ₂	$\int 2 + \frac{6x^2 - 3x + 5}{(x - 3)(x^2 + 1)} dx = \int 2 + \frac{5}{x - 3} dx$ = 2x + 5 ln x - 3 + k C without division, leading to: 5 ln x - 3 + 2 tan ⁻¹ x + C		• ⁷ available ³ . • ⁸ available. • ⁹ not available. Max $\left[\frac{6}{9}\right]$ Only • ⁵ • ⁷ • ⁸ available Max $\left[\frac{3}{9}\right]$
	D D ₂	$\frac{6x^2 - 3x + 5}{(x - 3)(x^2 + 1)} = \frac{A}{(x - 3)} + \frac{Bx}{x^2 + 1}$ $6x^2 - 3x + 5 = A(x^2 + 1) + B(x - 3)x$ $x = 0 \qquad 5 = A$ $x = 3 \qquad 50 = 10A$ $x = 1(\text{say}) \qquad 8 = 2A - 2B \Longrightarrow B = 1$ D without division, leading to a variety of answers.		D with division This will usually lead to the <u>correct</u> answer or similar, but no consideration of +C leading to $C = 0$. Therefore losing \bullet^3 and \bullet^6 , so $Max\left[\frac{7}{9}\right]$ Only $\bullet^5 \bullet^7 \bullet^8$ available $Max\left[\frac{3}{9}\right]$

Question		n	Expected Answer/s		Max Mark	Additional Guidance
18	a		Method 1	Method 2	2	
			$V = Ah \text{ (here of below)}$ $\frac{dh}{dt} = \frac{dh}{dV} \cdot \frac{dV}{dt} \bullet^{1}$ $\frac{dV}{dh} = A^{*} \dots$ $\therefore \frac{dh}{dV} = \frac{1}{A}^{*}$ $= \frac{1}{A} \cdot -k\sqrt{h} \bullet^{2}$ $= \frac{-k}{A}\sqrt{h}$	V = Ah or $\frac{dV}{dt} = \frac{d}{dt}(Ah) \bullet^{1}$ $k\sqrt{h} = A\frac{dh}{dt}$ $\frac{Adh}{dt} = -k\sqrt{h} \bullet^{2}$ $\frac{dh}{dt} = \frac{-k}{A}\sqrt{h}$		 ¹ (Ah) in brackets and/or <i>A</i> following line needed for Method 2, since taking <i>A</i> out as a constant necessary to illustrate understanding of validity of step. ² One or both of *lines needed for Method 1.
			Method 3	Method 4		
			$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt} \bullet^1 \qquad \text{or}$	$h = \frac{V}{A} \bullet^1$		
			$-k\sqrt{h} = A\frac{dh}{dt} \bullet^2$	$\frac{dh}{dt} = \frac{dV}{dt} \bigwedge_{A} \bullet^2$		

Question		n	Expected Answer/s	Max Mark	Additional Guidance
18	b		$\frac{dh}{dt} = -0.3 \text{ cm/hr when } h = 144$ $-0.3 = -\frac{k}{A}\sqrt{144}$ $\frac{k}{A} = \frac{1}{40} \therefore A = 40k$ $\frac{dh}{dt} = \frac{-k}{A}\sqrt{h}$ $\int \frac{1}{\sqrt{h}} dh = \int \frac{-k}{A} dt \text{OR} \qquad \int \frac{1}{\sqrt{h}} dh = \int -\frac{1}{40} dt$ $2\sqrt{h} = \frac{-k}{A}t + c$ $2\sqrt{144} = c \qquad c = 24$ $2\sqrt{h} = \frac{-k}{A}t + 24$ $\sqrt{h} = \frac{-k}{2A}t + 12$ $h = \left(\frac{-k}{2A}t + 12\right)^2$	4	 ³ Subs in dh/dt = -0.3 and h = 144. Award this mark if substitution appears in part (d). ⁴ separating variables³. ⁵ integrating correctly.
			$h = \left(\frac{-1}{80}t + 12\right)^2$		• ^o evaluating constant of integration <i>and</i> completion

Question		on	Expected Answer/s	Max Mark	Additional Guidance		
18	c		$0 = \left(-\frac{1}{80}t + 12\right)^2$ $-\frac{1}{80}t + 12 = 0$ $t = 960 \text{ hours}$	2	•7	knowing to set correct expression to zero	
			number days $=\frac{960}{24}=40$ days		• ⁸	Processing to obtain number of days ⁴	
18	d		$A = 400 \pi$	3			
			$\frac{k}{A} = \frac{1}{40}$ $k = 10 \pi$		•9	for finding <i>k</i> .	
			$h = \left(\frac{-1}{80}.96 + 12\right)^2$ dV		• ¹⁰	obtaining h or \sqrt{h}	
			$\frac{dt}{dt} = -108 \pi$ $\therefore \text{ Rate to vegetation is } 108\pi \text{ cm}^3 / \text{ hr}$		• ¹¹	processing to answer <i>with</i> interpretation.	
No	tes:						
18.	1 A	$\frac{dV}{dt}$	= $119 \cdot 5 \pi \mathrm{cm}^3$ / hr which comes from taking $t = 4$. Do not	ot award \bullet^1	0.		
18. 18. 18. cor	18.1 $A = 119 \cdot 5\pi \text{ cm}^3 / \text{hr}$ which comes from taking $t = 4$. Do not award \bullet^{10} . 18.2 Using $h = 144$ in part d leading to 377, do not award \bullet^{10} or \bullet^{11} . 18.3 Do not penalise omission of integration symbols. 18.4 Where candidate has used 144 instead of 0 initially, \bullet^7 lost, but \bullet^8 available if resulting quadratic solved correctly to obtain both $t = 0$ and $t = 1920$ discarding $t = 0$ answer and converting to 80 days						

[END OF MARKING INSTRUCTIONS]