X100/301

NATIONAL
QUALIFICATIONS 2007

TUESDAY, 15 MAY
9.00 AM - 10.10 AM

MATHEMATICS HIGHER

Units 1, 2 and 3
Paper 1
(Non-calculator)

Read Carefully

1 Calculators may NOT be used in this paper.

2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$$
\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta, \text { where } \theta \text { is the angle between } \boldsymbol{a} \text { and } \boldsymbol{b}
$$

$$
\text { or } \quad \boldsymbol{a} . \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \text {. }
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \overline{\sin } \mathrm{~A} \sin \mathrm{~B} \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

ALL questions should be attempted.

1. Find the equation of the line through the point $(-1,4)$ which is parallel to the line with equation $3 x-y+2=0$.
2. Relative to a suitable coordinate system A and B are the points $(-2,1,-1)$ and $(1,3,2)$ respectively.
A, B and C are collinear points and C is positioned such that $\mathrm{BC}=2 \mathrm{AB}$.

Find the coordinates of C .

3. Functions f and g, defined on suitable domains, are given by $f(x)=x^{2}+1$ and $g(x)=1-2 x$.
Find:
(a) $g(f(x))$;
(b) $g(g(x))$.
4. Find the range of values of k such that the equation $k x^{2}-x-1=0$ has no real roots.
5. The large circle has equation $x^{2}+y^{2}-14 x-16 y+77=0$.

Three congruent circles with centres A, B and C are drawn inside the large circle with the centres lying on a line parallel to the x-axis.

This pattern is continued, as shown in the diagram.

Find the equation of the circle with centre D.

6. Solve the equation $\sin 2 x^{\circ}=6 \cos x^{\circ}$ for $0 \leq x \leq 360$.
7. A sequence is defined by the recurrence relation

$$
u_{n+1}=\frac{1}{4} u_{n}+16, u_{0}=0 .
$$

(a) Calculate the values of u_{1}, u_{2} and u_{3}.

Four terms of this sequence, u_{1}, u_{2}, u_{3} and u_{4} are plotted as shown in the graph.
As $n \rightarrow \infty$, the points on the graph approach the line $u_{n}=k$, where k is the limit of this sequence.
(b) (i) Give a reason why this sequence has a limit.

(ii) Find the exact value of k.
8. The diagram shows a sketch of the graph of $y=x^{3}-4 x^{2}+x+6$.
(a) Show that the graph cuts the x-axis at $(3,0)$.
(b) Hence or otherwise find the coordinates of A.

(c) Find the shaded area.
9. A function f is defined by the formula $f(x)=3 x-x^{3}$.
(a) Find the exact values where the graph of $y=f(x)$ meets the x - and y-axes.
(b) Find the coordinates of the stationary points of the function and determine their nature.
(c) Sketch the graph of $y=f(x)$.
10. Given that $y=\sqrt{3 x^{2}+2}$, find $\frac{d y}{d x}$.
11. (a) Express $f(x)=\sqrt{3} \cos x+\sin x$ in the form $k \cos (x-a)$, where $k>0$ and $0<a<\frac{\pi}{2}$.
(b) Hence or otherwise sketch the graph of $y=f(x)$ in the interval $0 \leq x \leq 2 \pi$.

X100/303

NATIONAL
QUALIFICATIONS 2007

TUESDAY, 15 MAY
10.30 AM - 12.00 NOON

MATHEMATICS HIGHER

Units 1, 2 and 3
Paper 2

Read Carefully

1 Calculators may be used in this paper.

2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$$
\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta, \text { where } \theta \text { is the angle between } \boldsymbol{a} \text { and } \boldsymbol{b}
$$

$$
\text { or } \quad \boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

ALL questions should be attempted.

1. OABCDEFG is a cube with side 2 units, as shown in the diagram.

B has coordinates ($2,2,0$). P is the centre of face OCGD and Q is the centre of face CBFG.

(a) Write down the coordinates of G.
(b) Find \boldsymbol{p} and \boldsymbol{q}, the position vectors of points P and Q .
(c) Find the size of angle POQ.
2. The diagram shows two right-angled triangles with angles c and d marked as shown.

(a) Find the exact value of $\sin (c+d)$.
(b) (i) Find the exact value of $\sin 2 c$.
(ii) Show that $\cos 2 d$ has the same exact value.
3. Show that the line with equation $y=6-2 x$ is a tangent to the circle with equation $x^{2}+y^{2}+6 x-4 y-7=0$ and find the coordinates of the point of contact of the tangent and the circle.
4. The diagram shows part of the graph of a function whose equation is of the form $y=a \sin \left(b x^{\circ}\right)+c$.
(a) Write down the values of a, b and c.
(b) Determine the exact value of the x-coordinate of P , the point where the graph intersects the x-axis as

5. A circle centre C is situated so that it touches the parabola with equation $y=\frac{1}{2} x^{2}-8 x+34$ at P and Q .
(a) The gradient of the tangent to the parabola at Q is 4 . Find the coordinates of Q .
(b) Find the coordinates of P .
(c) Find the coordinates of C , the centre of

6. A householder has a garden in the shape of a right-angled isosceles triangle.

It is intended to put down a section of rectangular wooden decking at the side of the house, as shown in the diagram.

(a) (i) Find the exact value of ST.
(ii) Given that the breadth of the decking is x metres, show that the area of the decking, A square metres, is given by

$$
A=(10 \sqrt{2}) x-2 x^{2}
$$

(b) Find the dimensions of the decking which maximises its area.
7. Find the value of $\int_{0}^{2} \sin (4 x+1) d x$.
8. The curve with equation $y=\log _{3}(x-1)-2 \cdot 2$, where $x>1$, cuts the x-axis at the point $(a, 0)$.

Find the value of a.
9. The diagram shows the graph of $y=a^{x}, a>1$.

On separate diagrams, sketch the graphs of:
(a) $y=a^{-x}$;
(b) $y=a^{1-x}$.

(a) Given that $f^{\prime}(x)$ is of the form $k(x-a)(x-b)$:
(i) write down the values of a and b;
(ii) find the value of k.
(b) Find the equation of the graph of the cubic function $y=f(x)$.
11. Two variables x and y satisfy the equation $y=3 \times 4^{x}$.
(a) Find the value of a if $(a, 6)$ lies on the graph with equation $y=3 \times 4^{x}$.
(b) If $\left(-\frac{1}{2}, b\right)$ also lies on the graph, find b.
(c) A graph is drawn of $\log _{10} y$ against x. Show that its equation will be of the form $\log _{10} y=P x+Q$ and state the gradient of this line.

