Composite functions

1. If $f(x)=2 x+1$ and $g(x)=x^{2}$, find
(a) $f(g(x))$
(b) $g(f(x))$
(c) $f(f(x))$
(d) $g(g(x))$
2. Given $h(x)=1-x$ and $g(x)=\sqrt{x}$, find
(a) $g(16)$
(b) $h(g(16))$
(c) $g(h(x))$
(d) $h(g(x))$
3. $f(x)=\frac{2}{3 x}-1$ and $g(x)=\frac{2}{3 x+3}$.
(a) Calculate $f(g(x))$.
(b) What is the connection between $f(x)$ and $g(x)$?
4. $\quad f(x)=\sqrt{x+1} \frac{1}{2}$ and $g(x)=2 x^{2}-1$.
(a) Calculate $f(g(x))$.
(b) State the relationship between $f(x)$ and $g(x)$.
5. The function $h(x)=f(g(x))$.
(a) Write down $h(x)$ when $f(x)=2 x^{2}-16$ and $g(x)=2 x-1$.
(b) Write $h(x)$ in fully factorised form.
(c) For what values of x will the function $\frac{1}{h(x)}$ be undefined?
6. $f(x)=2 x-1$ and $g(x)=2 x+1$.
(a) Find a formula for $f(g(x))$ and $g(f(x))$.
(b) Find the least possible value of $f(g(x)) \times g(f(x))$.
7. $f(x)=\sin x^{0}$ and $g(x)=3 x+2$
(a) Write down an expression for $g(f(x))$.
(b) Solve the equation: $g(f(x))=1\{0 \leq x \leq 360\}$.
